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XIX.—On Knots. Part II. By Professor Tarr. (Plate XLIV.)

(Read 2nd June 1884.)

One main object of the present brief paper is to take advantage of the
results obtained by KIrkMaN,* and thus to extend my census of distinet forms
to knottiness of the 8th and 9th orders; for the carrying out of which, by my
own methods, I could not find time. But I employ the opportunity to give, in
a more extended form than that in the short abstract in the Proceedings, some
results connected with the general subject of knots, which were communi- -
cated to the Society on January 6, 1879, as well as others communicated at a
later date, but not yet printed even in abstract. '

L Census of 8-Fold and of 9-Fold Knottiness.

L. The method devised and employed by KirkmaN is undoubtedly much
less laborious than the thoroughly exhaustive process (depending on the
Scheme) which was fully described and illustrated in my former paper t; but it
shares, with the Partifion method, which I described in § 21 of that paper and
to which it has some resemblance, the disadvantage of being to a greater or less
extent tentative. . Not that the rules laid down, either in KirRkMAN’S method or
in my partition method, leave any room for mere guessing, but that they are too
complex to be always completely kept in view. Thus we cannot be absolutely
certain that by means of such processes we have obtained all the essentially
different forms which the definition we employ comprehends. This is proved
by the fact that, by the partition method, I detected certain omissions in
Kirgkman’s list, which in their turn enabled him to discover others, all of which
have now been corrected. And, on this ground, the present census may still
err in defect, though such an error is now perhaps not very probable.

On the other hand, the treatment to which I have subjected KIRKMAN'S col-
lection of forms, in order to group together all mere varieties or transformations
of one special form, is undoubtedly still more tentative in its nature; and
thus, though I have grouped together many widely different but equivalent
forms,- I cannot be absolutely certain that all those groups are essentially
different one from another.

Unfortunately these sources of possible error, though they tend (numeri-
cally) in opposite directions, and might thus by chance compensate one another

* Ante, p. 281. + On Knots, Trans. R.8S E., 1876-T.
VOL. XXXII. PART IL 3 H
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s0 far as to make the assigned numbers of essentially different forms accurate,
cannot in any other sense compensate. In other words, there may still be
! some fundamental forms omitted, while others may be retained in more than
one group of their possible transformations. Both difficulties grow at a fear-
fully rapid rate as we pass from one order of knottiness to the next above ; and
thus I have thought it well to make the most I could of the valuable materials
| placed before me ; for the full study of 10-fold and 11-fold knottiness seems to
‘ be relegated to the somewhat distant future.

2. The problem which KIrkMAN has attacked may, from the point of view
which I adopt, be thus stated :—* Form all the essentially distinct polyehdra *
(whether solids, quasi-solids, or unsolids) which have three, four, dc., eight, or
i § nine, four-edged solid angles.” Thus, in his results, there is no fear of
1 encountering two different projections of the same polyhedron; or, in the
; language of my former paper, no two of his results will give the same scheme.
| Thus there is no one which can be formed from another by the processes of §5
/ of my former paper.

3. But, when a projection of a knot is viewed as a polyhedron, we necessarily
lose sight of the changes which may be produced, by fwisting, in the knot itself
when formed of cord or wire; a process which (without introducing nugatory
crossings) may alter, often in many ways, the character of the corresponding
polyhedron. This subject was treated in §§ 4, 11, 14, &c., of my former paper.
But it is so essential in the present application that it is necessary to say some-
thing more about it here. It would lead to great detail were I to discuss each
example which has presented itself, especially in the 9-folds; but they can all
be seen in Pl. XLIV. , by comparing together two and two the various members
of each of the groups.

The following example, however, though one only of several possible trans-
formations is given, is sufficiently general to show the Whole bearlng of the
remark, so far at least as we’'at present require it.

It is obvious that either figure may be converted into the other, by merely
rotating through two right angles the part drawn in full lines, the dotted part
of the cord being held fixed. Also, the numbers of corners or edges in the
right and left handed meshes in these two figures are respectively as below :—

* This word is objectionable, on many grounds, in the present connection. Bubt a more suitable
one does not occur to me; and the qualification (given in brackets) will prevent any misconception.
Of course no projection of a ¢rue polyhedron can be cut by a straight line in two points only.
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55332 . 64332
443392 2 433332,

These numbers would hecessarily be identical if the forms could be repre-
sented by the same scheme. As will be seen by the list below, § 6, these are
respectively the second, and the sixth, of the group of equivalent forms of
number viI of the ninefold knots, (See Plate XLIV)

The characters of the various faces of the representative polyhedra (so far at
least as the number of their sides is concerned) are widely different in the two
cases. [Mr Kirgman objects to this process that it introduces twisting of the
cord or tape itself No doubt it does, or at least seems to do so, but the
algebraic sum of all the twists thus introduced is always zero; i.e., by “iron-
ing out” the tape in its new form, all this twist will be removed, I have often
used a comparison very analogous to this, to give to students a mnotion of the
nature of the kinematical explanation of the equal quantities of + and — elec-
tricity, which are always produced by electrification. If the two ends of a
stretched rope, along whose cylindrical surface a generating line is drawn, be

physical theories.] , .

As will be seen, by an examination of the latter part of Plate XLIV,, even
among the forms of 9-fold knottiness there are several which are capable of
more than one different changes of this kind. Some of these I may have failed
to notice. But it is worthy of remark that the S-folds seem, with two excep-
tions, to resemble the 7-folds in having at most two distinct polyhedral forms
for any one knot. _

4. KIRKMAN’S results for knottiness 3, 4, 5, 6,7, when bifilars and composites
are excluded, agree exactly- with those given in my former paper. I have
figured these afresh in Plate XLIV., in the forms suggested by KIRrmaN's
drawings, omitting only the single 6-fold, and the single 7-fold, which are com-
posite knots:

As will be seen in the Plate, where they are figured in groups, there are but
18 simple forms of 8-fold knottiness, Besides these there are 8 not properly
8-fold, being composite (i.e., made up of two separate knots on the same string) ;
either two of the unique 4-fold, or a trefoil with one or other of the two 5-folds.
These it was not thought necessary to figure, especially as they may present
themselves in a variety of forms.
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And the Plate also shows that there are 41 simple forms of 9-fold knotti-
ness. Besides these, and not figured, there are 5 made up of two mere separate
knots of lower orders, and one which is made up of three separate trefoils.

5. Thus the distinct forms of each order, from the 3rd to the 9th inclusive,
are in number

1, 1, 2, 4, 8 21, 47;
or, if we exclude combinations of separate knots,

1, 1, 2, 8, 7, 18, 41.

The later and larger of the numbers in these series, however, would be con-
siderably increased if we were to take account of arrangements of sign at the
crossings, other thay the alternate over and under which has been tacitly
assumed ; and which are, in certain cases, compatible with non-degradation of
the order of knottiness. This raises a question of considerable difficulty, upon
which I do not enter at present. Applications to one of the 8-folds and to one
of the 9-folds will be found in my former paper, § 42 (1) -

Another interesting fact which appears from Plate XLIV. is, that there are
six distinct amphicheiral forms of 8-fold knottiness : at least if we include one,
not figured, which consists of two separate 4-folds; in which case we must
consider that there are two six-fold amphicheirals, the second being the com-
bination of right and left handed trefoils, described in § 18 of my former paper.
Thus the number of 4amphicheirals is, in the 4-fold, 6-fold, and 8-fold knots
respectively, either 1, 2, 6, or (if we exclude composites), 1, 1, 5. All but two
of these 8-fold amphicheirals were treated in my former paper, two having been
separately figured, and the other being a mere common case of the general
forms of § 47. , ,

Finally, as a curious addition to the paragraphs on the genesis of amphicheiral
knots, given in my first paper, I mention the following, which is at once suggested
by the amphicheiral 6-fold —XKeeping one end of a string fixed, make a loop on
the other; pass the free end through it and across the fixed end ; pass the free
end again through the external loop last made, then ac¢ross the fixed end,
and so on indefinitely. The second time the fixed end is reached we have
the trefoil (if the alternate over and under be adhered to), the third time we
have the amphicheiral 6-fold ; and, generally, the nth time, a knot of 3(n—1)
fold knottiness, which is amphicheiral if # is odd. Three of these were, inci-
dentally, given in my former paper.

But, reverting to the main object of my former paper, we now see that the
distinctive forms of less than 10-fold knottiness are together more than sufficient
(with their perversions, &c.) for the known elements, as on the Vortex Atom
Theory.

6. From the point of view of theory, as suggested in §§ 12, 21, of my
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former paper, it may be well to give here the partitions of 2» which correspond

to true knots—for the values of » from 3 to 9 inclusive. The various parti-

‘E z tions, subject to the proper conditions, are all given, in the order of the number

g of separate parts in each; those which have a share in one or more of the true )
knots, as given in the Plate, are printed in larger type.

n=3 N =6 (contd.) N =8 (contd.) Nn=9 N =9 (contd.)
33 42229 772 99 66222
222 33222 763 972 , 65322
222222 754 - 963 64429
664 954 64332
N=4 n=7 655 ' 882 63333
8492 873 554929
44 77 8332 864 55332
422 752 7522 855 544392
332 743 7432 774 54333
2222 662 7333 765 44449
653 6622 666 44433
: 644 65392 9522 822222
n=5 554 6442 9432 732222
7322 6433 9333 642222
55 6492 5549 8622 633222
539 6332 5533 8532 - bb52222
4492 5522 5443 8442 - 5432922
433 5432 , 4444 8433 533322
4222 5333 82222 7722 444222
33292 4442 “732929 7632 4433922
22222 . 4433 _ 642922 7542 433332
62222 63329 7533 333333
53222 552929 7443 : 6222222
n=6 4492992 543292 6642 5322222
— 43322 53332 6633 44929292929
66 33332 44499 6552 4332222
642 422222 44332 6543 3333222
633 332222 43333 6444 49922299
552 2222222 622239 5553 33222229
543 532222 5544 2222292299
444 n=8 4422922 93222
6222 - 433299 84229 »
5322 88 333322 83322
4422 862 49292222 75292
4332 853 3322222 74322
3333 844 22929922 73332
The whole numbers of available partitions are thus in order :—

2, 4, 7, 14, 23, 40, 66.
Of these there are employed for knots proper only
2,1, 4, 4, 12, 17, 36,
respectively. The remainder give links, or composite knots, or combinations
of these. (See Appendix.) \
To enable the reader to identify, at a glance, any knot of less than 10-fold
knottiness, I subjoin the partitions corresponding to each figure in Plate XLIV.
It is to be remembered that (as in § 15 of my former paper) deformations which
are compatible with the same scheme, however they may change the appearance
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of a knot, do not alter the partitions. But it is also to be remembered that
identity of partitions, alone, does not necessarily secure identity of form.
The 3, 4, 5, and 6-folds may be disposed of in a single line.

n=3 n=+4 n=>5 n==~6 |
33 . 442 55 - 543 552
222 332 3322 , 22222 4332 , 33222 , 33222

Here the bar indicates not only that the right and left-handed partitions
are alike in number and value, but also that they are similarly connected, i.e.,
that the knot is amphicheiral. -

For thg Sevenfolds, we have

L - . 1L IIL A
5333 4433 5432 5432 5432 4433
43322 T 43322 433922 . 33332 44222 44229
IV. V. VI VIL
644 5522 662 it
332222 442292 332222 22299929
For the Eightfolds,
1 1L ' - IIL
54322 54322 54322 53332 44332
44332 53332 44332 °T 43333 44422 °F 44492
V. B 4 ' : VL VIL
5443 54322 - o 6532 6532
333322 44332 543292 143392 333322 - 453222 43333
VIIL IX. X. XL
6433 5443 5542 54322 54322 559922 55222
433222 °T 4332922 433292 44332 °F 54322 - 44332 °T 54322
XII. XIIT. XIV. XV. XVL XVIL XVIIIL
6532 655 763 754 ' 772
54322 433292 3322222 3322229 33229222 55222 33922222
Finally, for the Ninefolds, the list is
1 1L
44433 63333 63333 54333 54333 444353 44433

433332 533322 °T 443322 T 533322 OF 443322 T 533322 O 443322 - .
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IIT.

54333 44433
443322 T 443399

v VI

Iv.

54439 54439 54432 54432
533322 %' 533322 OF 443392 OF 443399

: VII

44449 64332 55332 or 064332 54439 54432

443322 ‘ 443322 °° 443322 T 443399 433322 °T 433332
VIIL

64332 55332 64332

443322 °F 443322 °T 533399 ©

IX. _ X. XI.
54432 5553 5544
443322 3333222 3333222
XIII.

55422 55422 55492
443322 °F 533322 °F 433339

XV. -

65322 55332 55332 65322
443322 °7 443322 7 543999 O 543900

XVIL

64332 or 64332 or 54432 or 54432
533322 443322 533322 443322

XIX.

55422 55429
533322 °F 443399

XXI. :
7443 7443 6543 6543

4332222 °7 3333222 °F 3333222 ° 4332299

55332 55332 64332

T 533322 °F 433332 OF 433339

XII

64422 . 64422 64422 64422
433332 7 333333 °F 533322 O 443399

XIV.

65322 . 65322 65322 65322
433332 7 433332 T 533322 °T 443399

XVI

7632 or 7632 or 7632
3333222 7" 3333222 ' 4332229

XVIIL

64332 54333 54432
543222 - ' 543222 °F 543999

XX.

55332 or 54432 or 24432
543222 543222 543222

XXII.

7533 6633 or 7533 6633
4332222 ™" 4332222 T 3333292 °T 3333999

XXIII. XXIV. XXV.
6543 5553 6552 6552 64422 & 44442 44442 64499
4332222 T 4332292 4332222 ° 3333922 443322 °" 543222 °F 443392 T 543999
XXV XXVIL XXVIIL,
66222 66222 66222 5544 6543 7533 6543

443322 °F 543299 °F 443399

- XXIX, XXX,

64422 64492 7542
543222 °F 443392

4422222 °F 4422292

4332222 °T 3333222

4332222 °T 4339999

XXXI.

7542 65222 55332
543222 °F 5439929
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XXXI1. XXXTIL. _ XXXIV. XXXV.
44442 or 04422 7632 6633 7542 or 5544 44433
552222 552222 4422222 °F 4492999 4422222 7" 44229222 333333

XXXVL XXXVIL XXXVIIL. XXXIX. XL. XLL
666 864 882 66222 7722 99
33222222 33222222 - 33222222 552222 4422922 222222222

It will be seen that the above list suggests many curious remarks. Thus,
in the eightfolds, we have two different amphicheirals, each having the parti-

tions 44332. Again, we have gi‘ggg for a knot which is not amphicheiral,

as well as 54322 for one which is amphicheiral. (See {47 of my former paper.)

And we have iiggg‘standing for two quite distinct knots. All these apparent

difficulties, however, are due to the incompleteness of the definition by parti-
tions merely (i.c., as by ListinG’s Type-Symbol). For, in addition to this, it is
requisite that we should know the relative grouping of the right-handed or of
the left-handed partitions.

In the Plate I have inserted the designations given in my former paper to
the various forms of 6-fold and 7-fold knottiness :—and I have also appended to
each form the designation of the corresponding figure in KIRKMAN’S drawings.

The Plate contains a great deal of information of a kind not yet alluded to
in this paper. It gives; for instance, an excellent set of examples of Knot- -
Sulness. This term implies (§ 35~of my former paper) “ the number of knots of
lower orders (whether interlinked or not) of which a given knot is built up.” It is
to be understood as applied to simple forms only ; for we have set aside, as
composite knots, all such as have any one component separable, so that it may
be drawn tight without fastening together two laps belonging to one or two of
the other components. , '

Thus, as a few of the examples of 2-fold knotfulness among the 8-folds, we
have ‘ ~

vI. and X1 (3-fold and once-beknotted 5-fold) ;
and 1. and v. (each two 4-folds) ; while
1L, 1x., and x1v. are different forms of two (linked) 3-folds.

Among the 9-folds we have, for instance,

xxx. and xxxi1l. (4-fold and clear-coiled 5-fold),
xvL and xxvI. (3-fold and § 6-fold),
XIV., XV., XVIIL, and XXV. (4-fold and once-beknotted 5-fold).

But we have also

IV., XIIL, XXIIL, and XXIV. (linkéd 3-fold and 4-fold),
XX., XXVIL (two 3-folds, linked, and with one kink).
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The analysis of self-locked knots, such as 1v. and vir. of the 8-folds, and 1., 1x.,
X., XIX., &c., of the 9-folds, is considered below.

II. Beknottedness.

7. The question of Beknottedness (on which I have occasionally made short
communications to the Society since my papers of 1876-7 were printed in a
brief condensed form) has been again forcibly impressed on me while
endeavouring to recognise identities among KIRKMAN’s groups. I still con-
sider that its proper measure is the smallest number of changes of sign which
will remove all knottiness. But, shortly after my former paper was published, I
was led to modify some ideas on the subject, which were at least partially
given there. I had been so much impressed by the very singular fact of the
existence of amphicheiral forms, that I fancied their properties might in great
.measure explain the inherent difficulties of this part of the subject. I have
since come to see that this notion was to some extent based on an imperfect
analogy, due to the properties of the 4-fold amphicheiral, and that the true
difficulty is connected with Locking. _ : )

8. The existence and nature of this third method of entangling cords were
first made clear to me by -one of the random sketches which I drew to
illustrate Sir W. THoMsoN’s paper on Vortex-Motion [ Trans. R. S. E., 1867-8].
I had not then even imagined that the crossings in any knot or linkage could
always be taken alternately over and under, though I found that T could make
them so in all these sketches. The particular figure above referred to again
presented itself, among others possessing a similar character, while I was
studying the peculiar group of plaited knots whose schemes contain the lettering
n alphabetical order in the even as well as in the odd places. (See §§ 27, 42,
of my former paper.) But I soon saw that, though I had first detected locking
in those members of the group of plaits where three separate strings are
involved, essentially the same sort of thing occurs in the other members of the
group, though they are also proper knots in the sense of being each formed

with a single continnous and endless string. And, as the above very simple

example sufficiently shows, we can have locking, independent of either knotting

or linking, with two separate strings. For it is clear that the irreducibility
VOL, XXXII. PART IL 4 31




8936 - PROFESSOR TAIT ON KNOTS.

of this combination depends solely “upon the sign of the central crossing.
There is no real linking of the two cords, and there is obviously no knotting.
But if the sign of any one of the crossings, except the central one, be changed,
the whole becomes the simple amphicheiral link, the linking having been
introduced by the change of sign. [This, as will be seen in § 14 below, is an
excellent example of a case in which the key-crossing of a locking is also a
root-crossing of a fundamental loop.] '

9. We may therefore define, as one degree of locking, any arrangement, or
independent part of an arrangement, analogous to that above (whether it be
made of one, two, or three separate strings), the criterion being that the change
of one sign unlocks the whole. But it is well to notice, again, that if, in the
above figure, we change the sign of any crossing except the central one, we
have one degree of linking left, and that this has in reality been introduced by
the change of sign. This remark extends, with few exceptions, to more
complex cases.

10. Thus, though the following 8-fold knot (which I reproduce from
Trans. R. S. E., 1877, p. 188) does not, at first sight, appear to depend on

locking, we have only to make a simple transformation (as ante, § 3) to re-
duce it to the symmetrical form in which the single degree of locking is

4

at once evident. It was by considering this knot, with its (quite unex-
pected) single degree of beknottedness, that I first saw the true bearing
of locking in the present subject. (It is given as x. of the 8-folds in Plate
XLIV.)

Other excellent instances of the same difficulty are the following. The first
of these is completely resolved, the second changed to the 3-fold, while the third
becomes apparently two linked trefoils, all by the change of the single crossing
in the middle of the lock. But with the 9-fold knot (which is merely a different
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projection of Pl XLIV. fig. xxxv.) the trefoils are so linked after this.
operation, that the change of sign of one crossing of either resolves the whole.

§ 8 &

This is, however, much more easily seen by at once changing the signs of the
middle and of the lower (or the upper) crossing, for the whole is thus resolved.
[This course is at once pointed out by the process of § 13 below, if we choose
as fundamental crossings the three highest in the figure.] Hence the beknotted-
ness is 1, 2, 2 in the last three figures respectively.

11. Another instructive example is afforded by the 8-fold knot below,
which is figured as 1v. on Plate XLIV. :—

At a first glance it appears to be made of two once-linked trefoils, and there-
fore to have three degrees of beknottedness. But a little consideration shows
that neither the trefoils nor the link have alternations of signs (i.e., there is
neither knotting nor linking), but that the whole is kept from resolution solely
by the lap of cord which has been drawn as a straight line in the figure. This
forms, as it were, the tail of a Rupert’s drop ; break it, and the whole falls to
pieces. A change of sign of either of the interior crossings on that lap makes
one trefoil; of either of the 4 lateral external crossings, the 6-fold amphi-
cheiral ; of the upper crossing, the 4-fold amphicheiral ; and of the lower axial
crossing, the 5-fold of one degree of beknottedness. All these modes of resolu-
tion lead to the result that the knot is of 2-fold beknottedness.

12. It is now obvious why, in consequence of locking and not of amphi-
cheiralism as I first thought, the electro-magnetic test fails in certain classes of
cases to indicate properly the amount of beknottedness. For it is clear that
in pure locking there is no electro-magnetjc work along the locked part of any
one of the three courses involved. Hence, for the part of a knot or link which
is locked, the electro-magnetic test necessarily gives an incorrect indication of
beknottedness. Perhaps it may be said that, in such cases, beknottedness is
not the proper name for this numerical feature of a knot:—but it is obviously
correct if defined as in §7 above.
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13. A simple but thoroughly practical improvement on the methods given
in my first paper for the graphical solution of Gavss' problem (extended) is as
follows :—Draw the knot or link, as below, with a double line, like the edges
of an untwisted tape, and dot (or go over with a coloured crayon) one of the

two lines. Now it is easy to see that, of the four angles at a crossing, one
angle is bounded by full lines, and its vertical angle by dotted lines. These
will be called the symmetrical angles. Also it is clear that the electro-magnetic
work has one sign for the crossings when the symmetrical angles are right-
handed, and the opposite sign when they are left-handed. Thus we can at once
mark each crossing as 7 or /, silver or copper, at pleasure. If the figure be a
knot, and if we cut it along a line dividing a symmetrical angle, re-uniting the
pairs of ends on either side of that line, the whole remains a knot (still with
alternations of over and under if the original was s0), but of knottiness at least
one degree lower. When the line divides an unsymmetrical angle, the whole
becomes (after re-uniting the ends, as before) two separate closed curves, in
general linked and, it may be, individually knotted. [When we treat a fink in
this way at any of the linkings (i.c., where two different strings cross one
another), it becomes a knot. It is -curious that by this process a knot is
equally likely to be changed into a knot or into a link, while a link always
becomes a knot.] This method has thie farther advantage of showing at
a glance the various sets of crossings which we may choose for omission
(in the electro-magnetic reckoning), as due merely to the coiling of the figure,
not to knotting, linking, or locking.. For each such crossing must belohg to a
simple loop, which, for reference, we will call fundamental Such a loop is
detected immediately by its having (throughout) the full line or the dotted line
for its external boundary, and therefore is necessarily closed at a symmetrical
angle. If we now erase these fundamental loops in succession, till no crossings
are left, the crossings at their bases form one of the groups which may be tried.
When part of the knot has locking, it is sometimes necessary to try more than
one of these groups before we arrive at the true measure of beknottedness.
As this is a matter of importance, it may be well to discuss it a little farther.
14. When there is no beknottedness (whether true, or depending on linking
or locking), the electro-magnetic work, with the proper correction for mere
coiling, is certainly né/. But this proper correction requires to be found, and
where there is locking its discovery sometimes presents a little difficulty.
When there is no locking, all we need do is to draw the knot afresh, beginning
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at a point external to each of the fundamental loops, and making each crossing
positive when we first reach it. It is evident that the fundamental loops or
coils will now be simply laid on one another. The signs of al/ the crossings on
any one loop may be changed, while that of the base of the loop is immaterial,
and this process may be carried out with some or all of the other fundamental
loops in any order. Compare the various signs in any state thus produced
with those (alternate or not) of the original knot, so as to find the smallest
number of changes necessary for its full resolution. The sign of the crossing
at the base of each fundamental loop is simply to be disregarded. Another
mode of going to work is to alter the signs at pairs of points where two funda-
mental loops cross, so as to diminish as far as possible the necessary number of
real changes of sign. But we must be very careful in using this process, to see
that it does not introduce locking. »

15. When there is locking in part of the knot, the real difficulty is met with
only if the crossing or crossings which form as it were the key of the locked
part, must also be taken as the base or bases of fundamental loops. 1In this
case we commence the fresh drawing of the knot at a point exterior to the
locking, but on the fundamental loop of which one of the key crossings forms
the base. This ensures that the completion of the fundamental loop is effected
by the last of the operations on the locked part. But the application of the
method can be learned far more easily from an example or two than from any
rules which could be laid down. Thus the following drawings represent the
results of this method as applied to two of the knots already figured. In the

first of these the two lower external crossings are taken for the fundamental
loops, and we see that the knot (if originally over and under alternately) re-
quires for its full resolution only the change of sign of each of the two cross-
ings which lie in its axis of symmetry. But, if we had chosen the crossings
last mentioned as bases of fundamental loops, we should at once have felt the
difficulty due to locking.

In-the second, all four crossings in the axis of symmetry close fundamental
loops ; but the change of the sign of the lowest of these, alone (which is the
key of the locked part), is required for the full resolution.
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APPENDIX.

Note on @ Problem in Partitions. By Professor TAtr.
(Read July 7; 1884.)

In the partition method of constructing knots of any" order, », of knottiness, we have to select from
the group of partitions of 2x those only in which no part is greater than %, and no part less than 2.

Thus, as given in thé text, § 6, we have for sevenfold knottiness the series of partitions of 14 ;—
but they aré now arranged below in classes according to the value of the largest partition.

7 662 554 4442 33332 2222222
752 653 5522 4433 332222
743 644 5432 44222 '
7322 6422 _ 5333 43322
6332 53222 422222
62222

It is an interesting inquiry to find how many there are in each class, for any value of n. The number
of classes is obviously n—1; and, if we remove from each the first partition (7.e., that which is not in-
ferior to any of the others), the remainders form a new set of classes of partitions which we may desig-
nate as

n n~1 n-2 2
Dn !.pn.-i-l y pn+27 « o Ponoz

respectively ;—where p] is defined as the number of partitions of s, in which no partition is greater than
7, and none less than 2.

Without explicitly introducing finite differences or generabing functions it is easy to caleulate the
values of the quantity p} ;—and to put them in a table of double entry which can be developed to any
desired extent by the simplest arithmetical processes. The method is similar to one which I employed
some years ago for the solution of a problem in Arrangements (Proc. R.S.E., viii. 37, 1872),

In the first place we see at once that if 7>s

Yo =p;.

Thus, if » denote the column, and s the row, of the table in which 2; oceurs, all numbers in the row
following p; are equal to it. Thus the values of p! enable us to fll up half the table. In the remain-
ing half r is less than s; and by a dissection of this class of partitions, similar to that which was given
above, we see that

Vi=pi,+0lint . o P4+,

where the two last terms obviously vanish ; and the first term is obviously 1 in the case of r=g¢, unless
<2, when it vanishes,
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Hence, if the following be a portion of the table, the crosses being placed for the various values of
Ps, nil or not,
Values of 7,

0123 45¢67s8

0 ++ 4+ ++++H+
o1 ++ ++ + +G + +
e 2| +++++F+ 44
2 3 + 4+ ++E+ + + +
S 4 4+ +D4+ o+ o+
~ 5 ++ 0+ + + 4+ 4+ +
6 + B+ + + + 4+ + +

7 A+++K++LL

it will be seen at a glance that the above equation tells us to add the numbers A'BCDE together,
to find the number at K. This is quite genergl, so that L, in the second last column, is the sum of
A, B,...., H; and all the numbers beyond it, in the same row, are equal to it. In the table on next
page, each number corresponding to the first L is printed in heavier type, and its repetitions are taken

for granted.

Thus it is clear that simple addition will enable us to eonstruct the table, row by row, provided we
know the numbers in the first row and those in the first column. Those in the first and second columns
are all obviously zero, as above. -The rest of the first row consists of units. These are the values of
P55 t.e., the first term of the expression above for p7. Hence we have the table on the following page,
whieh is completed only to »=17, with the corresponding sub-groups. .

From the table we see that pJ=8. Hence the partitions of 18, subject to the conditions, are in
number

8+11+11+14+10+8+3+1=66,

which agrees with the detailed list in § 7 above.

[The rule is to look out the number p7, and add it to all those which lie in the diagonal line drawn
form it downwards towards the left. But the construction of the table shows us that this is the same
as to look out p2, at once. .

Similarly we verify the other numbers of partitions given in the text.

And it is to be remembered that p7 is the number of required partitions in which n occurs, and that
every one of the class p717 has for its largest constituent n—r Thus, looking in the table for p! and
the numbers in the corresponding downward left-handed diagonal, we find the series

4 6 5 5 2 1,

which will be seen at once to represent the dissection of the partitions of 14 given above,

The investigation above was limited by the restriction, imposed by the theory of knots, that no par-
tition should be less than 2. But it is obvious that the method of this note is applicable to partitions,
whether unrestricted, or with other restrictions than that above. The only difficulty lies in the border-
tng of the table of double-entry. Thus, if we wish to include unit partitions, all we have to do is to put
unit instead of zero at the place r=1, s=0, and develop as before, Or, what will come to the same
thing, sum all the columns of the above table downwards from the top, and write each partial sum
instead of the last quantity added, putting unit at every place in the second column.

Similarly, we may easily form the corresponding tables when it is required that'the partitions shall
be all even, or all odd. '
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Table of the values of 7; the number of partitions of s in which no one is
less than 2, nor greater than 7.

(The values of T are in the first row, those of s in the first column.)
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10
13
14
17
18
22
23
28
29
34
36
42
44
50
53,
60
63
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19
20
26
27
36
36
47
49
60
63
78
80
97
102
120

POIN- T

10
11
16
17
23
26
33
37
47
532
64
72
86
96
115
127
149
166

-1 =% -

11
12
18
19
27
30
40
44

58

64
82
91
113
126
155
171
207

9 10 11

12 13 14 15 16 17

55
73
83

59
77
90

21
23
33
39
52
61
81
94

107 115 122
123 135 143
154 168 180
177 197

220

24
33
40
53
63
83

34
40
54
64
85

41
54
65
86

98 100 102
126 130

150

55 .
65 66
87

From what has been stated in the previous pages, it is easy to see how to
extend this table ; forming the successive terms of each row by adding step by
along a diagonal, thence upwards to the top, zig-zag
along the row of heavier type as soon as it is reached.




