Braid Representatives: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 33: Line 33:
{{InOut1|n=6}}
{{InOut1|n=6}}
PD[br1]
PD[br1]
{{InOut2|n=6}}<pre style="border: 0px; padding: 0em">PD[X[6, 3, 1, 4], X[4, 1, 5, 2], X[2, 5, 3, 6]]</pre>
{{InOut2|n=6}}
PD[X[6, 3, 1, 4], X[4, 1, 5, 2], X[2, 5, 3, 6]]
{{InOut3}}
{{InOut3}}
<!--END-->
<!--END-->

Revision as of 13:13, 24 August 2005

Every knot and every link is the closure of a braid. KnotTheory` can also represent knots and links as braid closures:

(For In[1] see Setup)

In[2]:= ?BR

BR stands for Braid Representative. BR[k,l] represents a braid on k strands with crossings l={i1,i2,...}, where a positive index i within the list l indicates a right-handed crossing between strand number i and strand number i+1 and a negative i indicates a left handed crossing between strands numbers |i| and |i|+1. Each ij can also be a list of non-adjacent (i.e., commuting) indices. BR also acts as a "type caster": BR[K] will return a braid whose closure is K if K is given in any format that KnotTheory` understands. BR[K] where K is is a named knot with up to 10 crossings returns a minimum braid representative for that knot.

In[3]:= BR::about

The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See his article on the subject at arXiv:math.GT/0401051. Vogel's algorithm was implemented by Dan Carney in the summer of 2005 at the University of Toronto.

In[4]:= ?Mirror

Mirror[br] return the mirror braid of br.

Thus for example,

In[5]:=

br1 = BR[2, {-1, -1, -1}];


In[6]:=

PD[br1]

Out[6]=
PD[X[6, 3, 1, 4], X[4, 1, 5, 2], X[2, 5, 3, 6]]