10 144

From Knot Atlas
Jump to: navigation, search

10 143.gif

10_143

10 145.gif

10_145

Contents

10 144.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 144's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 144 at Knotilus!

Sergei Chmutov points out that in the 1976 edition of Rolfsen's book, 10_144 was drawn incorrectly.


Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X18,11,19,12 X5,15,6,14 X17,7,18,6 X7,17,8,16 X15,9,16,8 X20,13,1,14 X12,19,13,20 X9,2,10,3
Gauss code -1, 10, -2, 1, -4, 5, -6, 7, -10, 2, 3, -9, 8, 4, -7, 6, -5, -3, 9, -8
Dowker-Thistlethwaite code 4 10 14 16 2 -18 -20 8 6 -12
Conway Notation [31,21,21-]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif

Length is 11, width is 4,

Braid index is 4

10 144 ML.gif 10 144 AP.gif
[{9, 1}, {12, 7}, {3, 8}, {7, 9}, {6, 10}, {8, 11}, {10, 12}, {2, 4}, {5, 3}, {4, 6}, {1, 5}, {11, 2}]

[edit Notes on presentations of 10 144]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 3
Super bridge index Missing
Nakanishi index 2
Maximal Thurston-Bennequin number [-9][-1]
Hyperbolic Volume 10.7966
A-Polynomial See Data:10 144/A-polynomial

[edit Notes for 10 144's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus 1
Topological 4 genus 1
Concordance genus 2
Rasmussen s-Invariant -2

[edit Notes for 10 144's four dimensional invariants]

Polynomial invariants

Alexander polynomial -3 t^2+10 t-13+10 t^{-1} -3 t^{-2}
Conway polynomial -3 z^4-2 z^2+1
2nd Alexander ideal (db, data sources) \left\{2,t^2+t+1\right\}
Determinant and Signature { 39, -2 }
Jones polynomial 2 q-3+5 q^{-1} -7 q^{-2} +7 q^{-3} -6 q^{-4} +5 q^{-5} -3 q^{-6} + q^{-7}
HOMFLY-PT polynomial (db, data sources) z^2 a^6-z^4 a^4+2 a^4-2 z^4 a^2-5 z^2 a^2-4 a^2+2 z^2+3
Kauffman polynomial (db, data sources) z^4 a^8-z^2 a^8+3 z^5 a^7-4 z^3 a^7+4 z^6 a^6-6 z^4 a^6+2 z^2 a^6+3 z^7 a^5-4 z^5 a^5+4 z^3 a^5-2 z a^5+z^8 a^4+2 z^6 a^4-2 z^4 a^4-2 z^2 a^4+2 a^4+4 z^7 a^3-8 z^5 a^3+8 z^3 a^3-2 z a^3+z^8 a^2-2 z^6 a^2+8 z^4 a^2-12 z^2 a^2+4 a^2+z^7 a-z^5 a+3 z^4-7 z^2+3
The A2 invariant q^{22}-q^{20}-q^{18}+2 q^{16}+2 q^{12}-2 q^8-q^6-3 q^4+2 q^2+1+ q^{-2} +2 q^{-4}
The G2 invariant q^{114}-2 q^{112}+4 q^{110}-6 q^{108}+4 q^{106}-q^{104}-4 q^{102}+13 q^{100}-18 q^{98}+22 q^{96}-19 q^{94}+3 q^{92}+12 q^{90}-29 q^{88}+39 q^{86}-36 q^{84}+24 q^{82}-24 q^{78}+38 q^{76}-35 q^{74}+17 q^{72}+4 q^{70}-24 q^{68}+27 q^{66}-13 q^{64}-5 q^{62}+34 q^{60}-45 q^{58}+42 q^{56}-16 q^{54}-18 q^{52}+48 q^{50}-63 q^{48}+57 q^{46}-32 q^{44}+5 q^{42}+27 q^{40}-49 q^{38}+47 q^{36}-34 q^{34}+7 q^{32}+13 q^{30}-34 q^{28}+23 q^{26}-4 q^{24}-12 q^{22}+28 q^{20}-38 q^{18}+22 q^{16}+3 q^{14}-29 q^{12}+44 q^{10}-46 q^8+30 q^6-17 q^2+29-29 q^{-2} +25 q^{-4} -7 q^{-6} -4 q^{-8} +9 q^{-10} -10 q^{-12} +8 q^{-14} - q^{-16} + q^{-18} + q^{-20}