10 155

From Knot Atlas
Jump to: navigation, search

10 154.gif

10_154

10 156.gif

10_156

Contents

10 155.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 155's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 155 at Knotilus!


Knot presentations

Planar diagram presentation X1627 X7,16,8,17 X3,11,4,10 X15,3,16,2 X5,15,6,14 X11,5,12,4 X9,18,10,19 X20,14,1,13 X17,8,18,9 X12,20,13,19
Gauss code -1, 4, -3, 6, -5, 1, -2, 9, -7, 3, -6, -10, 8, 5, -4, 2, -9, 7, 10, -8
Dowker-Thistlethwaite code 6 10 14 16 18 4 -20 2 8 -12
Conway Notation [-3:2:2]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif

Length is 10, width is 3,

Braid index is 3

10 155 ML.gif 10 155 AP.gif
[{11, 2}, {1, 9}, {10, 3}, {2, 4}, {3, 6}, {4, 8}, {9, 7}, {8, 5}, {7, 11}, {6, 1}, {5, 10}]

[edit Notes on presentations of 10 155]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index 2
Maximal Thurston-Bennequin number [-3][-7]
Hyperbolic Volume 9.25054
A-Polynomial See Data:10 155/A-polynomial

[edit Notes for 10 155's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus 0
Topological 4 genus 0
Concordance genus 0
Rasmussen s-Invariant 0

[edit Notes for 10 155's four dimensional invariants]

Polynomial invariants

Alexander polynomial -t^3+3 t^2-5 t+7-5 t^{-1} +3 t^{-2} - t^{-3}
Conway polynomial -z^6-3 z^4-2 z^2+1
2nd Alexander ideal (db, data sources) \{5,t+1\}
Determinant and Signature { 25, 0 }
Jones polynomial q^6-2 q^5+3 q^4-4 q^3+4 q^2-4 q+4-2 q^{-1} + q^{-2}
HOMFLY-PT polynomial (db, data sources) -z^6 a^{-2} -5 z^4 a^{-2} +z^4 a^{-4} +z^4-8 z^2 a^{-2} +3 z^2 a^{-4} +3 z^2-4 a^{-2} +2 a^{-4} +3
Kauffman polynomial (db, data sources) z^8 a^{-2} +z^8 a^{-4} +z^7 a^{-1} +3 z^7 a^{-3} +2 z^7 a^{-5} -3 z^6 a^{-2} -2 z^6 a^{-4} +z^6 a^{-6} -z^5 a^{-1} -9 z^5 a^{-3} -8 z^5 a^{-5} +7 z^4 a^{-2} -z^4 a^{-4} -4 z^4 a^{-6} +4 z^4+2 a z^3+6 z^3 a^{-3} +8 z^3 a^{-5} +a^2 z^2-11 z^2 a^{-2} -z^2 a^{-4} +4 z^2 a^{-6} -5 z^2-2 z a^{-3} -2 z a^{-5} +4 a^{-2} +2 a^{-4} +3
The A2 invariant q^6+2 q^2+1-2 q^{-6} - q^{-10} + q^{-14} + q^{-18}
The G2 invariant q^{38}-q^{36}+q^{34}-q^{32}+q^{28}-2 q^{26}+2 q^{24}-q^{18}+q^{16}-q^{14}+2 q^{12}+3 q^{10}-2 q^8+7 q^6-6 q^4+5 q^2+5-8 q^{-2} +13 q^{-4} -9 q^{-6} +2 q^{-8} +7 q^{-10} -11 q^{-12} +9 q^{-14} -4 q^{-16} -5 q^{-18} +7 q^{-20} -10 q^{-22} +2 q^{-24} +2 q^{-26} -11 q^{-28} +10 q^{-30} -11 q^{-32} +4 q^{-34} + q^{-36} -7 q^{-38} +10 q^{-40} -12 q^{-42} +11 q^{-44} -5 q^{-46} -2 q^{-48} +9 q^{-50} -11 q^{-52} +11 q^{-54} - q^{-56} -5 q^{-58} +10 q^{-60} -8 q^{-62} +3 q^{-64} +7 q^{-66} -12 q^{-68} +12 q^{-70} -6 q^{-72} -2 q^{-74} +9 q^{-76} -11 q^{-78} +10 q^{-80} -5 q^{-82} - q^{-84} +3 q^{-86} -5 q^{-88} +3 q^{-90} - q^{-92} + q^{-94}