10 61

From Knot Atlas
Jump to: navigation, search

10 60.gif

10_60

10 62.gif

10_62

Contents

10 61.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 61's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 61 at Knotilus!

10_61 is also known as the pretzel knot P(4,3,3).


Knot presentations

Planar diagram presentation X8291 X10,4,11,3 X2,10,3,9 X18,12,19,11 X14,7,15,8 X16,5,17,6 X6,15,7,16 X4,17,5,18 X20,14,1,13 X12,20,13,19
Gauss code 1, -3, 2, -8, 6, -7, 5, -1, 3, -2, 4, -10, 9, -5, 7, -6, 8, -4, 10, -9
Dowker-Thistlethwaite code 8 10 16 14 2 18 20 6 4 12
Conway Notation [4,3,3]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif

Length is 11, width is 4,

Braid index is 4

10 61 ML.gif 10 61 AP.gif
[{6, 13}, {1, 12}, {13, 11}, {12, 4}, {10, 3}, {11, 9}, {8, 10}, {9, 7}, {5, 8}, {4, 2}, {3, 6}, {2, 5}, {7, 1}]

[edit Notes on presentations of 10 61]


Three dimensional invariants

Symmetry type Reversible
Unknotting number \{2,3\}
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index 2
Maximal Thurston-Bennequin number [-1][-11]
Hyperbolic Volume 8.45858
A-Polynomial See Data:10 61/A-polynomial

[edit Notes for 10 61's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus 2
Topological 4 genus 2
Concordance genus 3
Rasmussen s-Invariant -4

[edit Notes for 10 61's four dimensional invariants]

Polynomial invariants

Alexander polynomial -2 t^3+5 t^2-6 t+7-6 t^{-1} +5 t^{-2} -2 t^{-3}
Conway polynomial -2 z^6-7 z^4-4 z^2+1
2nd Alexander ideal (db, data sources) \left\{2,t^2+t+1\right\}
Determinant and Signature { 33, 4 }
Jones polynomial q^8-2 q^7+3 q^6-4 q^5+5 q^4-5 q^3+4 q^2-4 q+3- q^{-1} + q^{-2}
HOMFLY-PT polynomial (db, data sources) -z^6 a^{-2} -z^6 a^{-4} -5 z^4 a^{-2} -4 z^4 a^{-4} +z^4 a^{-6} +z^4-8 z^2 a^{-2} -3 z^2 a^{-4} +3 z^2 a^{-6} +4 z^2-5 a^{-2} + a^{-4} + a^{-6} +4
Kauffman polynomial (db, data sources) z^9 a^{-1} +z^9 a^{-3} +4 z^8 a^{-2} +3 z^8 a^{-4} +z^8-5 z^7 a^{-1} +5 z^7 a^{-5} -22 z^6 a^{-2} -10 z^6 a^{-4} +5 z^6 a^{-6} -7 z^6+6 z^5 a^{-1} -16 z^5 a^{-3} -18 z^5 a^{-5} +4 z^5 a^{-7} +38 z^4 a^{-2} +5 z^4 a^{-4} -13 z^4 a^{-6} +3 z^4 a^{-8} +17 z^4+z^3 a^{-1} +26 z^3 a^{-3} +17 z^3 a^{-5} -6 z^3 a^{-7} +2 z^3 a^{-9} -24 z^2 a^{-2} +z^2 a^{-4} +6 z^2 a^{-6} -2 z^2 a^{-8} +z^2 a^{-10} -16 z^2-2 z a^{-1} -8 z a^{-3} -6 z a^{-5} +5 a^{-2} + a^{-4} - a^{-6} +4
The A2 invariant q^6+q^4+2 q^2+2- q^{-4} -3 q^{-6} -2 q^{-8} +2 q^{-14} + q^{-24}
The G2 invariant q^{26}+3 q^{22}-3 q^{20}+3 q^{18}-q^{16}+7 q^{12}-9 q^{10}+10 q^8-3 q^6+q^4+8 q^2-12+11 q^{-2} -2 q^{-4} +5 q^{-8} -9 q^{-10} +4 q^{-12} +5 q^{-14} -4 q^{-16} + q^{-18} -5 q^{-20} - q^{-22} +4 q^{-24} -8 q^{-26} +4 q^{-28} -9 q^{-30} +5 q^{-32} + q^{-34} -7 q^{-36} +6 q^{-38} -12 q^{-40} +8 q^{-42} -5 q^{-44} -3 q^{-46} +7 q^{-48} -9 q^{-50} +5 q^{-52} +3 q^{-54} -3 q^{-56} +4 q^{-58} - q^{-60} -4 q^{-62} +6 q^{-64} -3 q^{-66} +3 q^{-68} + q^{-70} -2 q^{-72} +6 q^{-74} -3 q^{-76} +3 q^{-78} - q^{-80} + q^{-82} - q^{-84} + q^{-86} + q^{-88} -2 q^{-90} +4 q^{-92} -3 q^{-94} +2 q^{-96} - q^{-98} - q^{-100} -3 q^{-104} +3 q^{-106} - q^{-108} + q^{-110} - q^{-114} +2 q^{-116} -2 q^{-118} +2 q^{-120} - q^{-122} - q^{-128} + q^{-130} - q^{-132} + q^{-134}