8 6

From Knot Atlas
Jump to: navigation, search

8 5.gif

8_5

8 7.gif

8_7

Contents

8 6.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 8 6's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 6 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X9,12,10,13 X3,11,4,10 X11,3,12,2 X5,14,6,15 X7,16,8,1 X15,6,16,7 X13,8,14,9
Gauss code -1, 4, -3, 1, -5, 7, -6, 8, -2, 3, -4, 2, -8, 5, -7, 6
Dowker-Thistlethwaite code 4 10 14 16 12 2 8 6
Conway Notation [332]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 9, width is 4,

Braid index is 4

8 6 ML.gif 8 6 AP.gif
[{10, 3}, {4, 2}, {3, 9}, {1, 4}, {8, 10}, {9, 5}, {2, 6}, {5, 7}, {6, 8}, {7, 1}]

[edit Notes on presentations of 8 6]

Knot 8_6.
A graph, knot 8_6.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index \{4,6\}
Nakanishi index 1
Maximal Thurston-Bennequin number [-9][-1]
Hyperbolic Volume 7.47524
A-Polynomial See Data:8 6/A-polynomial

[edit Notes for 8 6's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus 1
Topological 4 genus 1
Concordance genus 2
Rasmussen s-Invariant -2

[edit Notes for 8 6's four dimensional invariants]

Polynomial invariants

Alexander polynomial -2 t^2+6 t-7+6 t^{-1} -2 t^{-2}
Conway polynomial -2 z^4-2 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 23, -2 }
Jones polynomial q-1+3 q^{-1} -4 q^{-2} +4 q^{-3} -4 q^{-4} +3 q^{-5} -2 q^{-6} + q^{-7}
HOMFLY-PT polynomial (db, data sources) z^2 a^6+a^6-z^4 a^4-2 z^2 a^4-a^4-z^4 a^2-2 z^2 a^2-a^2+z^2+2
Kauffman polynomial (db, data sources) z^4 a^8-2 z^2 a^8+2 z^5 a^7-4 z^3 a^7+z a^7+2 z^6 a^6-4 z^4 a^6+3 z^2 a^6-a^6+z^7 a^5-z^5 a^5+2 z^3 a^5-z a^5+3 z^6 a^4-6 z^4 a^4+6 z^2 a^4-a^4+z^7 a^3-2 z^5 a^3+5 z^3 a^3-3 z a^3+z^6 a^2-2 z^2 a^2+a^2+z^5 a-z^3 a-z a+z^4-3 z^2+2
The A2 invariant q^{22}+q^{16}-q^{14}-q^{10}-q^8-q^4+2 q^2+1+ q^{-2} + q^{-4}
The G2 invariant q^{114}-q^{112}+2 q^{110}-3 q^{108}+q^{106}-3 q^{102}+6 q^{100}-7 q^{98}+7 q^{96}-4 q^{94}-2 q^{92}+7 q^{90}-9 q^{88}+11 q^{86}-6 q^{84}+q^{82}+5 q^{80}-7 q^{78}+7 q^{76}-2 q^{74}-3 q^{72}+6 q^{70}-5 q^{68}+2 q^{66}+4 q^{64}-9 q^{62}+12 q^{60}-10 q^{58}+5 q^{56}+q^{54}-10 q^{52}+13 q^{50}-13 q^{48}+10 q^{46}-5 q^{44}-3 q^{42}+7 q^{40}-10 q^{38}+6 q^{36}-3 q^{34}-4 q^{32}+5 q^{30}-5 q^{28}-q^{26}+6 q^{24}-8 q^{22}+8 q^{20}-6 q^{18}-q^{16}+6 q^{14}-8 q^{12}+10 q^{10}-5 q^8+3 q^6+2 q^4-2 q^2+4-3 q^{-2} +4 q^{-4} - q^{-6} + q^{-8} + q^{-10} - q^{-12} +2 q^{-14} + q^{-18}