9 13

From Knot Atlas
Jump to: navigation, search

9 12.gif

9_12

9 14.gif

9_14

Contents

9 13.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 13's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 13 at Knotilus!


Knot presentations

Planar diagram presentation X6271 X14,6,15,5 X16,8,17,7 X18,10,1,9 X8,18,9,17 X10,16,11,15 X2,14,3,13 X12,4,13,3 X4,12,5,11
Gauss code 1, -7, 8, -9, 2, -1, 3, -5, 4, -6, 9, -8, 7, -2, 6, -3, 5, -4
Dowker-Thistlethwaite code 6 12 14 16 18 4 2 10 8
Conway Notation [3213]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 11, width is 4,

Braid index is 4

9 13 ML.gif 9 13 AP.gif
[{3, 7}, {8, 6}, {7, 5}, {6, 4}, {5, 9}, {2, 8}, {10, 3}, {9, 11}, {1, 10}, {11, 2}, {4, 1}]

[edit Notes on presentations of 9 13]


Three dimensional invariants

Symmetry type Reversible
Unknotting number \{2,3\}
3-genus 2
Bridge index 2
Super bridge index \{4,6\}
Nakanishi index 1
Maximal Thurston-Bennequin number [3][-14]
Hyperbolic Volume 9.13509
A-Polynomial See Data:9 13/A-polynomial

[edit Notes for 9 13's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus 2
Topological 4 genus 2
Concordance genus 2
Rasmussen s-Invariant -4

[edit Notes for 9 13's four dimensional invariants]

Polynomial invariants

Alexander polynomial 4 t^2-9 t+11-9 t^{-1} +4 t^{-2}
Conway polynomial 4 z^4+7 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 37, 4 }
Jones polynomial -q^{11}+2 q^{10}-4 q^9+5 q^8-6 q^7+7 q^6-5 q^5+4 q^4-2 q^3+q^2
HOMFLY-PT polynomial (db, data sources) z^4 a^{-4} +2 z^4 a^{-6} +z^4 a^{-8} +2 z^2 a^{-4} +5 z^2 a^{-6} +z^2 a^{-8} -z^2 a^{-10} +3 a^{-6} - a^{-8} - a^{-10}
Kauffman polynomial (db, data sources) z^8 a^{-8} +z^8 a^{-10} +2 z^7 a^{-7} +4 z^7 a^{-9} +2 z^7 a^{-11} +3 z^6 a^{-6} +z^6 a^{-8} +2 z^6 a^{-12} +2 z^5 a^{-5} -2 z^5 a^{-7} -9 z^5 a^{-9} -4 z^5 a^{-11} +z^5 a^{-13} +z^4 a^{-4} -7 z^4 a^{-6} -4 z^4 a^{-8} -z^4 a^{-10} -5 z^4 a^{-12} -3 z^3 a^{-5} +z^3 a^{-7} +9 z^3 a^{-9} +2 z^3 a^{-11} -3 z^3 a^{-13} -2 z^2 a^{-4} +8 z^2 a^{-6} +6 z^2 a^{-8} -2 z^2 a^{-10} +2 z^2 a^{-12} +z a^{-7} -3 z a^{-9} -2 z a^{-11} +2 z a^{-13} -3 a^{-6} - a^{-8} + a^{-10}
The A2 invariant  q^{-6} - q^{-8} + q^{-10} +3 q^{-16} + q^{-18} +2 q^{-20} - q^{-24} -2 q^{-28} - q^{-34}
The G2 invariant  q^{-30} - q^{-32} +2 q^{-34} -3 q^{-36} +2 q^{-38} - q^{-40} -2 q^{-42} +7 q^{-44} -8 q^{-46} +11 q^{-48} -9 q^{-50} +4 q^{-52} +4 q^{-54} -12 q^{-56} +19 q^{-58} -20 q^{-60} +17 q^{-62} -8 q^{-64} -4 q^{-66} +18 q^{-68} -22 q^{-70} +23 q^{-72} -13 q^{-74} + q^{-76} +10 q^{-78} -15 q^{-80} +13 q^{-82} - q^{-84} -8 q^{-86} +22 q^{-88} -18 q^{-90} +6 q^{-92} +13 q^{-94} -27 q^{-96} +36 q^{-98} -32 q^{-100} +16 q^{-102} +4 q^{-104} -21 q^{-106} +34 q^{-108} -36 q^{-110} +24 q^{-112} -9 q^{-114} -11 q^{-116} +18 q^{-118} -22 q^{-120} +14 q^{-122} -2 q^{-124} -10 q^{-126} +15 q^{-128} -14 q^{-130} +2 q^{-132} +12 q^{-134} -24 q^{-136} +24 q^{-138} -17 q^{-140} + q^{-142} +13 q^{-144} -23 q^{-146} +26 q^{-148} -20 q^{-150} +9 q^{-152} +2 q^{-154} -12 q^{-156} +14 q^{-158} -12 q^{-160} +9 q^{-162} -3 q^{-164} - q^{-166} +3 q^{-168} -4 q^{-170} +3 q^{-172} - q^{-174} + q^{-176}