K11a107

From Knot Atlas
Jump to: navigation, search

K11a106.gif

K11a106

K11a108.gif

K11a108

Contents

K11a107.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a107 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,4,11,3 X14,5,15,6 X16,7,17,8 X2,10,3,9 X20,12,21,11 X18,13,19,14 X8,15,9,16 X6,17,7,18 X22,20,1,19 X12,22,13,21
Gauss code 1, -5, 2, -1, 3, -9, 4, -8, 5, -2, 6, -11, 7, -3, 8, -4, 9, -7, 10, -6, 11, -10
Dowker-Thistlethwaite code 4 10 14 16 2 20 18 8 6 22 12
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a107 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number \{1,2\}
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a107/ThurstonBennequinNumber
Hyperbolic Volume 14.3064
A-Polynomial See Data:K11a107/A-polynomial

[edit Notes for K11a107's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 3
Rasmussen s-Invariant -2

[edit Notes for K11a107's four dimensional invariants]

Polynomial invariants

Alexander polynomial 2 t^3-11 t^2+26 t-33+26 t^{-1} -11 t^{-2} +2 t^{-3}
Conway polynomial 2 z^6+z^4+1
2nd Alexander ideal (db, data sources) \left\{2,t^2+t+1\right\}
Determinant and Signature { 111, 2 }
Jones polynomial q^7-4 q^6+8 q^5-12 q^4+16 q^3-18 q^2+17 q-14+11 q^{-1} -6 q^{-2} +3 q^{-3} - q^{-4}
HOMFLY-PT polynomial (db, data sources) z^6 a^{-2} +z^6-a^2 z^4+z^4 a^{-2} -2 z^4 a^{-4} +3 z^4-2 a^2 z^2-2 z^2 a^{-2} -2 z^2 a^{-4} +z^2 a^{-6} +5 z^2-a^2-3 a^{-2} + a^{-4} +4
Kauffman polynomial (db, data sources) z^{10} a^{-2} +z^{10}+3 a z^9+7 z^9 a^{-1} +4 z^9 a^{-3} +3 a^2 z^8+13 z^8 a^{-2} +8 z^8 a^{-4} +8 z^8+a^3 z^7-6 a z^7-8 z^7 a^{-1} +9 z^7 a^{-3} +10 z^7 a^{-5} -12 a^2 z^6-35 z^6 a^{-2} -4 z^6 a^{-4} +8 z^6 a^{-6} -35 z^6-4 a^3 z^5-6 a z^5-21 z^5 a^{-1} -35 z^5 a^{-3} -12 z^5 a^{-5} +4 z^5 a^{-7} +16 a^2 z^4+24 z^4 a^{-2} -9 z^4 a^{-4} -8 z^4 a^{-6} +z^4 a^{-8} +40 z^4+5 a^3 z^3+16 a z^3+29 z^3 a^{-1} +26 z^3 a^{-3} +6 z^3 a^{-5} -2 z^3 a^{-7} -8 a^2 z^2-10 z^2 a^{-2} +3 z^2 a^{-4} +3 z^2 a^{-6} -18 z^2-2 a^3 z-6 a z-8 z a^{-1} -6 z a^{-3} -2 z a^{-5} +a^2+3 a^{-2} + a^{-4} +4
The A2 invariant Data:K11a107/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a107/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_113, K11a347,}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {}

Vassiliev invariants

V2 and V3: (0, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
0 -8 0 -16 -8 0 \frac{112}{3} \frac{64}{3} 24 0 32 0 0 104 -40 \frac{440}{3} -\frac{88}{3} 40

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=2 is the signature of K11a107. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-10123456χ
15           11
13          3 -3
11         51 4
9        73  -4
7       95   4
5      97    -2
3     89     -1
1    710      3
-1   47       -3
-3  27        5
-5 14         -3
-7 2          2
-91           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{8}
r=1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a106.gif

K11a106

K11a108.gif

K11a108