K11a25

From Knot Atlas
Jump to: navigation, search

K11a24.gif

K11a24

K11a26.gif

K11a26

Contents

K11a25.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a25 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X12,5,13,6 X2837 X18,10,19,9 X20,11,21,12 X6,13,7,14 X10,16,11,15 X22,18,1,17 X14,19,15,20 X16,22,17,21
Gauss code 1, -4, 2, -1, 3, -7, 4, -2, 5, -8, 6, -3, 7, -10, 8, -11, 9, -5, 10, -6, 11, -9
Dowker-Thistlethwaite code 4 8 12 2 18 20 6 10 22 14 16
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a25 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number \{1,2\}
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a25/ThurstonBennequinNumber
Hyperbolic Volume 17.7863
A-Polynomial See Data:K11a25/A-polynomial

[edit Notes for K11a25's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 4
Rasmussen s-Invariant -2

[edit Notes for K11a25's four dimensional invariants]

Polynomial invariants

Alexander polynomial -t^4+6 t^3-18 t^2+33 t-39+33 t^{-1} -18 t^{-2} +6 t^{-3} - t^{-4}
Conway polynomial -z^8-2 z^6-2 z^4-z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 155, 2 }
Jones polynomial -q^8+4 q^7-9 q^6+16 q^5-22 q^4+25 q^3-25 q^2+22 q-16+10 q^{-1} -4 q^{-2} + q^{-3}
HOMFLY-PT polynomial (db, data sources) -z^8 a^{-2} -5 z^6 a^{-2} +2 z^6 a^{-4} +z^6-11 z^4 a^{-2} +7 z^4 a^{-4} -z^4 a^{-6} +3 z^4-12 z^2 a^{-2} +9 z^2 a^{-4} -2 z^2 a^{-6} +4 z^2-5 a^{-2} +4 a^{-4} - a^{-6} +3
Kauffman polynomial (db, data sources) 2 z^{10} a^{-2} +2 z^{10} a^{-4} +7 z^9 a^{-1} +14 z^9 a^{-3} +7 z^9 a^{-5} +19 z^8 a^{-2} +21 z^8 a^{-4} +10 z^8 a^{-6} +8 z^8+4 a z^7-6 z^7 a^{-1} -14 z^7 a^{-3} +4 z^7 a^{-5} +8 z^7 a^{-7} +a^2 z^6-55 z^6 a^{-2} -52 z^6 a^{-4} -12 z^6 a^{-6} +4 z^6 a^{-8} -18 z^6-8 a z^5-11 z^5 a^{-1} -17 z^5 a^{-3} -26 z^5 a^{-5} -11 z^5 a^{-7} +z^5 a^{-9} -2 a^2 z^4+50 z^4 a^{-2} +43 z^4 a^{-4} +5 z^4 a^{-6} -5 z^4 a^{-8} +15 z^4+5 a z^3+11 z^3 a^{-1} +21 z^3 a^{-3} +23 z^3 a^{-5} +7 z^3 a^{-7} -z^3 a^{-9} +a^2 z^2-24 z^2 a^{-2} -18 z^2 a^{-4} -z^2 a^{-6} +2 z^2 a^{-8} -8 z^2-a z-3 z a^{-1} -6 z a^{-3} -6 z a^{-5} -2 z a^{-7} +5 a^{-2} +4 a^{-4} + a^{-6} +3
The A2 invariant q^8-2 q^6+4 q^4-q^2+4 q^{-2} -6 q^{-4} +4 q^{-6} -4 q^{-8} + q^{-10} +2 q^{-12} -3 q^{-14} +5 q^{-16} -2 q^{-18} + q^{-22} - q^{-24}
The G2 invariant q^{46}-3 q^{44}+8 q^{42}-16 q^{40}+23 q^{38}-28 q^{36}+20 q^{34}+11 q^{32}-66 q^{30}+145 q^{28}-216 q^{26}+228 q^{24}-143 q^{22}-63 q^{20}+357 q^{18}-625 q^{16}+753 q^{14}-615 q^{12}+190 q^{10}+409 q^8-975 q^6+1270 q^4-1120 q^2+547+253 q^{-2} -963 q^{-4} +1286 q^{-6} -1080 q^{-8} +449 q^{-10} +337 q^{-12} -920 q^{-14} +1032 q^{-16} -632 q^{-18} -121 q^{-20} +884 q^{-22} -1316 q^{-24} +1205 q^{-26} -568 q^{-28} -380 q^{-30} +1275 q^{-32} -1781 q^{-34} +1685 q^{-36} -1007 q^{-38} -25 q^{-40} +1032 q^{-42} -1653 q^{-44} +1665 q^{-46} -1082 q^{-48} +174 q^{-50} +693 q^{-52} -1162 q^{-54} +1067 q^{-56} -488 q^{-58} -276 q^{-60} +875 q^{-62} -1027 q^{-64} +679 q^{-66} +6 q^{-68} -720 q^{-70} +1166 q^{-72} -1164 q^{-74} +750 q^{-76} -106 q^{-78} -527 q^{-80} +917 q^{-82} -982 q^{-84} +755 q^{-86} -353 q^{-88} -53 q^{-90} +345 q^{-92} -475 q^{-94} +442 q^{-96} -312 q^{-98} +147 q^{-100} -94 q^{-104} +128 q^{-106} -121 q^{-108} +88 q^{-110} -46 q^{-112} +15 q^{-114} +8 q^{-116} -17 q^{-118} +16 q^{-120} -13 q^{-122} +7 q^{-124} -3 q^{-126} + q^{-128}

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a19, K11a281,}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {K11a19,}

Vassiliev invariants

V2 and V3: (-1, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
-4 0 8 \frac{130}{3} \frac{62}{3} 0 32 0 0 -\frac{32}{3} 0 -\frac{520}{3} -\frac{248}{3} -\frac{7471}{30} \frac{1822}{15} -\frac{17822}{45} \frac{1135}{18} -\frac{2671}{30}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=2 is the signature of K11a25. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-101234567χ
17           1-1
15          3 3
13         61 -5
11        103  7
9       126   -6
7      1310    3
5     1212     0
3    1013      -3
1   713       6
-1  39        -6
-3 17         6
-5 3          -3
-71           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{10}
r=1 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=2 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{13}
r=3 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a24.gif

K11a24

K11a26.gif

K11a26