K11a284

From Knot Atlas
Jump to: navigation, search

K11a283.gif

K11a283

K11a285.gif

K11a285

Contents

K11a284.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a284 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X10,3,11,4 X16,6,17,5 X14,7,15,8 X20,10,21,9 X4,11,5,12 X18,14,19,13 X2,16,3,15 X22,17,1,18 X8,20,9,19 X12,22,13,21
Gauss code 1, -8, 2, -6, 3, -1, 4, -10, 5, -2, 6, -11, 7, -4, 8, -3, 9, -7, 10, -5, 11, -9
Dowker-Thistlethwaite code 6 10 16 14 20 4 18 2 22 8 12
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gif
A Morse Link Presentation K11a284 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number \{1,2\}
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a284/ThurstonBennequinNumber
Hyperbolic Volume 19.2643
A-Polynomial See Data:K11a284/A-polynomial

[edit Notes for K11a284's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 4
Rasmussen s-Invariant -2

[edit Notes for K11a284's four dimensional invariants]

Polynomial invariants

Alexander polynomial -t^4+7 t^3-21 t^2+38 t-45+38 t^{-1} -21 t^{-2} +7 t^{-3} - t^{-4}
Conway polynomial -z^8-z^6+z^4+z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 179, 2 }
Jones polynomial -q^8+4 q^7-10 q^6+18 q^5-25 q^4+29 q^3-29 q^2+26 q-19+12 q^{-1} -5 q^{-2} + q^{-3}
HOMFLY-PT polynomial (db, data sources) -z^8 a^{-2} -4 z^6 a^{-2} +2 z^6 a^{-4} +z^6-6 z^4 a^{-2} +6 z^4 a^{-4} -z^4 a^{-6} +2 z^4-4 z^2 a^{-2} +6 z^2 a^{-4} -2 z^2 a^{-6} +z^2- a^{-2} +2 a^{-4} - a^{-6} +1
Kauffman polynomial (db, data sources) 4 z^{10} a^{-2} +4 z^{10} a^{-4} +11 z^9 a^{-1} +22 z^9 a^{-3} +11 z^9 a^{-5} +18 z^8 a^{-2} +20 z^8 a^{-4} +13 z^8 a^{-6} +11 z^8+5 a z^7-16 z^7 a^{-1} -38 z^7 a^{-3} -8 z^7 a^{-5} +9 z^7 a^{-7} +a^2 z^6-57 z^6 a^{-2} -57 z^6 a^{-4} -20 z^6 a^{-6} +4 z^6 a^{-8} -23 z^6-8 a z^5-z^5 a^{-1} +11 z^5 a^{-3} -9 z^5 a^{-5} -12 z^5 a^{-7} +z^5 a^{-9} -a^2 z^4+42 z^4 a^{-2} +47 z^4 a^{-4} +16 z^4 a^{-6} -4 z^4 a^{-8} +14 z^4+3 a z^3+3 z^3 a^{-1} +3 z^3 a^{-3} +12 z^3 a^{-5} +8 z^3 a^{-7} -z^3 a^{-9} -12 z^2 a^{-2} -16 z^2 a^{-4} -6 z^2 a^{-6} +z^2 a^{-8} -3 z^2-z a^{-3} -3 z a^{-5} -2 z a^{-7} + a^{-2} +2 a^{-4} + a^{-6} +1
The A2 invariant q^8-3 q^6+4 q^4-2 q^2+5 q^{-2} -6 q^{-4} +6 q^{-6} -4 q^{-8} +2 q^{-10} +2 q^{-12} -4 q^{-14} +5 q^{-16} -3 q^{-18} + q^{-22} - q^{-24}
The G2 invariant Data:K11a284/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {}

Vassiliev invariants

V2 and V3: (1, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
4 16 8 \frac{110}{3} -\frac{14}{3} 64 \frac{352}{3} -\frac{128}{3} 48 \frac{32}{3} 128 \frac{440}{3} -\frac{56}{3} \frac{13471}{30} -\frac{2542}{15} \frac{9662}{45} \frac{1217}{18} \frac{511}{30}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=2 is the signature of K11a284. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-101234567χ
17           1-1
15          3 3
13         71 -6
11        113  8
9       147   -7
7      1511    4
5     1414     0
3    1215      -3
1   815       7
-1  411        -7
-3 18         7
-5 4          -4
-71           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=0 {\mathbb Z}^{15}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{12}
r=1 {\mathbb Z}^{15}\oplus{\mathbb Z}_2^{14} {\mathbb Z}^{14}
r=2 {\mathbb Z}^{14}\oplus{\mathbb Z}_2^{15} {\mathbb Z}^{15}
r=3 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{14} {\mathbb Z}^{14}
r=4 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a283.gif

K11a283

K11a285.gif

K11a285