From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a305 at Knotilus!

Knot presentations

Planar diagram presentation X6271 X12,4,13,3 X10,5,11,6 X22,8,1,7 X16,9,17,10 X18,12,19,11 X20,13,21,14 X8,15,9,16 X4,18,5,17 X2,19,3,20 X14,21,15,22
Gauss code 1, -10, 2, -9, 3, -1, 4, -8, 5, -3, 6, -2, 7, -11, 8, -5, 9, -6, 10, -7, 11, -4
Dowker-Thistlethwaite code 6 12 10 22 16 18 20 8 4 2 14
A Braid Representative
A Morse Link Presentation K11a305 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number \{1,2\}
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a305/ThurstonBennequinNumber
Hyperbolic Volume 17.2512
A-Polynomial See Data:K11a305/A-polynomial

[edit Notes for K11a305's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [2,4]
Rasmussen s-Invariant 2

[edit Notes for K11a305's four dimensional invariants]

Polynomial invariants

Alexander polynomial -t^4+6 t^3-16 t^2+28 t-33+28 t^{-1} -16 t^{-2} +6 t^{-3} - t^{-4}
Conway polynomial -z^8-2 z^6+2 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 135, -2 }
Jones polynomial -q^4+4 q^3-9 q^2+14 q-18+22 q^{-1} -21 q^{-2} +19 q^{-3} -14 q^{-4} +8 q^{-5} -4 q^{-6} + q^{-7}
HOMFLY-PT polynomial (db, data sources) -a^2 z^8+a^4 z^6-5 a^2 z^6+2 z^6+3 a^4 z^4-9 a^2 z^4-z^4 a^{-2} +7 z^4+2 a^4 z^2-5 a^2 z^2-2 z^2 a^{-2} +7 z^2-a^4+a^2- a^{-2} +2
Kauffman polynomial (db, data sources) 3 a^2 z^{10}+3 z^{10}+10 a^3 z^9+16 a z^9+6 z^9 a^{-1} +14 a^4 z^8+15 a^2 z^8+4 z^8 a^{-2} +5 z^8+12 a^5 z^7-14 a^3 z^7-44 a z^7-17 z^7 a^{-1} +z^7 a^{-3} +8 a^6 z^6-27 a^4 z^6-64 a^2 z^6-13 z^6 a^{-2} -42 z^6+4 a^7 z^5-15 a^5 z^5-5 a^3 z^5+26 a z^5+9 z^5 a^{-1} -3 z^5 a^{-3} +a^8 z^4-6 a^6 z^4+20 a^4 z^4+64 a^2 z^4+13 z^4 a^{-2} +50 z^4-2 a^7 z^3+4 a^5 z^3+9 a^3 z^3+3 a z^3+3 z^3 a^{-1} +3 z^3 a^{-3} -6 a^4 z^2-19 a^2 z^2-6 z^2 a^{-2} -19 z^2+a^5 z-2 a z-2 z a^{-1} -z a^{-3} -a^4-a^2+ a^{-2} +2
The A2 invariant q^{20}-2 q^{18}+2 q^{16}-3 q^{14}-2 q^{12}+3 q^{10}-3 q^8+6 q^6-q^4+2 q^2+2-3 q^{-2} +3 q^{-4} -2 q^{-6} + q^{-10} - q^{-12}
The G2 invariant Data:K11a305/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a157, K11a264,}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {}

Vassiliev invariants

V2 and V3: (2, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
8 -8 32 \frac{172}{3} \frac{44}{3} -64 -\frac{368}{3} -\frac{224}{3} 24 \frac{256}{3} 32 \frac{1376}{3} \frac{352}{3} \frac{8791}{15} \frac{476}{15} \frac{9604}{45} \frac{425}{9} \frac{871}{15}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=-2 is the signature of K11a305. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
j \
9           1-1
7          3 3
5         61 -5
3        83  5
1       106   -4
-1      128    4
-3     1011     1
-5    911      -2
-7   510       5
-9  39        -6
-11 15         4
-13 3          -3
-151           1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-2 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=-1 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=0 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{12}
r=1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.