K11a83

From Knot Atlas
Jump to: navigation, search

K11a82.gif

K11a82

K11a84.gif

K11a84

Contents

K11a83.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a83 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,4,11,3 X12,5,13,6 X16,8,17,7 X2,10,3,9 X22,11,1,12 X18,14,19,13 X20,16,21,15 X8,18,9,17 X14,20,15,19 X6,21,7,22
Gauss code 1, -5, 2, -1, 3, -11, 4, -9, 5, -2, 6, -3, 7, -10, 8, -4, 9, -7, 10, -8, 11, -6
Dowker-Thistlethwaite code 4 10 12 16 2 22 18 20 8 14 6
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation K11a83 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number \{2,3\}
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a83/ThurstonBennequinNumber
Hyperbolic Volume 14.7703
A-Polynomial See Data:K11a83/A-polynomial

[edit Notes for K11a83's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 4
Rasmussen s-Invariant -4

[edit Notes for K11a83's four dimensional invariants]

Polynomial invariants

Alexander polynomial t^4-5 t^3+14 t^2-23 t+27-23 t^{-1} +14 t^{-2} -5 t^{-3} + t^{-4}
Conway polynomial z^8+3 z^6+4 z^4+4 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 113, 4 }
Jones polynomial q^{10}-4 q^9+8 q^8-13 q^7+16 q^6-18 q^5+18 q^4-14 q^3+11 q^2-6 q+3- q^{-1}
HOMFLY-PT polynomial (db, data sources) z^8 a^{-4} -z^6 a^{-2} +6 z^6 a^{-4} -2 z^6 a^{-6} -4 z^4 a^{-2} +15 z^4 a^{-4} -8 z^4 a^{-6} +z^4 a^{-8} -5 z^2 a^{-2} +18 z^2 a^{-4} -11 z^2 a^{-6} +2 z^2 a^{-8} -2 a^{-2} +8 a^{-4} -6 a^{-6} + a^{-8}
Kauffman polynomial (db, data sources) z^{10} a^{-4} +z^{10} a^{-6} +3 z^9 a^{-3} +8 z^9 a^{-5} +5 z^9 a^{-7} +3 z^8 a^{-2} +9 z^8 a^{-4} +16 z^8 a^{-6} +10 z^8 a^{-8} +z^7 a^{-1} -6 z^7 a^{-3} -13 z^7 a^{-5} +5 z^7 a^{-7} +11 z^7 a^{-9} -12 z^6 a^{-2} -41 z^6 a^{-4} -51 z^6 a^{-6} -14 z^6 a^{-8} +8 z^6 a^{-10} -4 z^5 a^{-1} -6 z^5 a^{-3} -15 z^5 a^{-5} -32 z^5 a^{-7} -15 z^5 a^{-9} +4 z^5 a^{-11} +16 z^4 a^{-2} +52 z^4 a^{-4} +50 z^4 a^{-6} +6 z^4 a^{-8} -7 z^4 a^{-10} +z^4 a^{-12} +5 z^3 a^{-1} +16 z^3 a^{-3} +31 z^3 a^{-5} +29 z^3 a^{-7} +7 z^3 a^{-9} -2 z^3 a^{-11} -9 z^2 a^{-2} -29 z^2 a^{-4} -24 z^2 a^{-6} -3 z^2 a^{-8} +z^2 a^{-10} -2 z a^{-1} -7 z a^{-3} -13 z a^{-5} -9 z a^{-7} -z a^{-9} +2 a^{-2} +8 a^{-4} +6 a^{-6} + a^{-8}
The A2 invariant -q^2+1-2 q^{-2} + q^{-4} +2 q^{-6} - q^{-8} +6 q^{-10} - q^{-12} +3 q^{-14} -3 q^{-18} + q^{-20} -4 q^{-22} + q^{-24} - q^{-28} + q^{-30}
The G2 invariant q^{12}-2 q^{10}+6 q^8-11 q^6+14 q^4-16 q^2+5+17 q^{-2} -48 q^{-4} +80 q^{-6} -97 q^{-8} +78 q^{-10} -21 q^{-12} -76 q^{-14} +181 q^{-16} -251 q^{-18} +249 q^{-20} -156 q^{-22} -17 q^{-24} +210 q^{-26} -357 q^{-28} +399 q^{-30} -297 q^{-32} +94 q^{-34} +147 q^{-36} -324 q^{-38} +373 q^{-40} -270 q^{-42} +74 q^{-44} +147 q^{-46} -278 q^{-48} +274 q^{-50} -123 q^{-52} -99 q^{-54} +309 q^{-56} -392 q^{-58} +321 q^{-60} -100 q^{-62} -190 q^{-64} +437 q^{-66} -552 q^{-68} +482 q^{-70} -243 q^{-72} -79 q^{-74} +363 q^{-76} -518 q^{-78} +481 q^{-80} -289 q^{-82} +13 q^{-84} +217 q^{-86} -334 q^{-88} +287 q^{-90} -121 q^{-92} -84 q^{-94} +234 q^{-96} -259 q^{-98} +151 q^{-100} +31 q^{-102} -219 q^{-104} +327 q^{-106} -315 q^{-108} +199 q^{-110} -15 q^{-112} -164 q^{-114} +283 q^{-116} -310 q^{-118} +249 q^{-120} -130 q^{-122} - q^{-124} +106 q^{-126} -168 q^{-128} +173 q^{-130} -136 q^{-132} +81 q^{-134} -17 q^{-136} -29 q^{-138} +53 q^{-140} -62 q^{-142} +51 q^{-144} -32 q^{-146} +15 q^{-148} + q^{-150} -8 q^{-152} +10 q^{-154} -10 q^{-156} +6 q^{-158} -3 q^{-160} + q^{-162}

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {}

Vassiliev invariants

V2 and V3: (4, 6)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
16 48 128 \frac{680}{3} \frac{88}{3} 768 1152 224 112 \frac{2048}{3} 1152 \frac{10880}{3} \frac{1408}{3} \frac{90422}{15} \frac{2344}{5} \frac{87608}{45} \frac{58}{9} \frac{3782}{15}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=4 is the signature of K11a83. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-1012345678χ
21           11
19          3 -3
17         51 4
15        83  -5
13       85   3
11      108    -2
9     88     0
7    610      4
5   58       -3
3  27        5
1 14         -3
-1 2          2
-31           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=3 i=5
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=2 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=3 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=4 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=5 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=7 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=8 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a82.gif

K11a82

K11a84.gif

K11a84