K11a99

From Knot Atlas
Jump to: navigation, search

K11a98.gif

K11a98

K11a100.gif

K11a100

Contents

K11a99.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a99 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,3,11,4 X12,6,13,5 X20,8,21,7 X16,10,17,9 X2,11,3,12 X18,13,19,14 X8,16,9,15 X22,17,1,18 X6,20,7,19 X14,21,15,22
Gauss code 1, -6, 2, -1, 3, -10, 4, -8, 5, -2, 6, -3, 7, -11, 8, -5, 9, -7, 10, -4, 11, -9
Dowker-Thistlethwaite code 4 10 12 20 16 2 18 8 22 6 14
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation K11a99 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number \{1,2\}
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a99/ThurstonBennequinNumber
Hyperbolic Volume 16.6086
A-Polynomial See Data:K11a99/A-polynomial

[edit Notes for K11a99's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 4
Rasmussen s-Invariant -2

[edit Notes for K11a99's four dimensional invariants]

Polynomial invariants

Alexander polynomial -t^4+6 t^3-17 t^2+28 t-31+28 t^{-1} -17 t^{-2} +6 t^{-3} - t^{-4}
Conway polynomial -z^8-2 z^6-z^4-2 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 135, 2 }
Jones polynomial q^7-4 q^6+9 q^5-14 q^4+19 q^3-22 q^2+21 q-18+14 q^{-1} -8 q^{-2} +4 q^{-3} - q^{-4}
HOMFLY-PT polynomial (db, data sources) -z^8 a^{-2} -5 z^6 a^{-2} +z^6 a^{-4} +2 z^6-a^2 z^4-10 z^4 a^{-2} +3 z^4 a^{-4} +7 z^4-2 a^2 z^2-10 z^2 a^{-2} +3 z^2 a^{-4} +7 z^2-4 a^{-2} +2 a^{-4} +3
Kauffman polynomial (db, data sources) 2 z^{10} a^{-2} +2 z^{10}+5 a z^9+13 z^9 a^{-1} +8 z^9 a^{-3} +4 a^2 z^8+19 z^8 a^{-2} +13 z^8 a^{-4} +10 z^8+a^3 z^7-12 a z^7-27 z^7 a^{-1} -z^7 a^{-3} +13 z^7 a^{-5} -14 a^2 z^6-62 z^6 a^{-2} -18 z^6 a^{-4} +9 z^6 a^{-6} -49 z^6-3 a^3 z^5+a z^5-25 z^5 a^{-3} -17 z^5 a^{-5} +4 z^5 a^{-7} +16 a^2 z^4+55 z^4 a^{-2} +7 z^4 a^{-4} -8 z^4 a^{-6} +z^4 a^{-8} +55 z^4+3 a^3 z^3+10 a z^3+15 z^3 a^{-1} +18 z^3 a^{-3} +9 z^3 a^{-5} -z^3 a^{-7} -6 a^2 z^2-23 z^2 a^{-2} -5 z^2 a^{-4} +3 z^2 a^{-6} -21 z^2-a^3 z-3 a z-3 z a^{-1} -3 z a^{-3} -2 z a^{-5} +4 a^{-2} +2 a^{-4} +3
The A2 invariant -q^{12}+q^{10}+q^8-q^6+4 q^4-2 q^2+2+ q^{-2} -4 q^{-4} +3 q^{-6} -5 q^{-8} +3 q^{-10} - q^{-14} +3 q^{-16} -2 q^{-18} + q^{-20}
The G2 invariant q^{60}-3 q^{58}+9 q^{56}-19 q^{54}+28 q^{52}-33 q^{50}+17 q^{48}+26 q^{46}-91 q^{44}+165 q^{42}-204 q^{40}+167 q^{38}-37 q^{36}-174 q^{34}+394 q^{32}-522 q^{30}+480 q^{28}-242 q^{26}-135 q^{24}+516 q^{22}-741 q^{20}+713 q^{18}-405 q^{16}-48 q^{14}+467 q^{12}-683 q^{10}+599 q^8-269 q^6-156 q^4+498 q^2-586+391 q^{-2} +18 q^{-4} -460 q^{-6} +748 q^{-8} -756 q^{-10} +454 q^{-12} +43 q^{-14} -573 q^{-16} +935 q^{-18} -987 q^{-20} +703 q^{-22} -172 q^{-24} -401 q^{-26} +798 q^{-28} -894 q^{-30} +643 q^{-32} -188 q^{-34} -279 q^{-36} +566 q^{-38} -560 q^{-40} +292 q^{-42} +105 q^{-44} -431 q^{-46} +544 q^{-48} -402 q^{-50} +68 q^{-52} +293 q^{-54} -544 q^{-56} +602 q^{-58} -444 q^{-60} +168 q^{-62} +140 q^{-64} -372 q^{-66} +462 q^{-68} -420 q^{-70} +276 q^{-72} -96 q^{-74} -65 q^{-76} +179 q^{-78} -227 q^{-80} +213 q^{-82} -152 q^{-84} +78 q^{-86} -5 q^{-88} -46 q^{-90} +68 q^{-92} -74 q^{-94} +57 q^{-96} -33 q^{-98} +13 q^{-100} +4 q^{-102} -10 q^{-104} +11 q^{-106} -10 q^{-108} +6 q^{-110} -3 q^{-112} + q^{-114}

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a277,}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {}

Vassiliev invariants

V2 and V3: (-2, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
-8 -16 32 \frac{116}{3} \frac{76}{3} 128 \frac{800}{3} \frac{224}{3} 80 -\frac{256}{3} 128 -\frac{928}{3} -\frac{608}{3} \frac{1769}{15} \frac{948}{5} -\frac{13084}{45} \frac{1111}{9} -\frac{1591}{15}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=2 is the signature of K11a99. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-10123456χ
15           11
13          3 -3
11         61 5
9        83  -5
7       116   5
5      118    -3
3     1011     -1
1    912      3
-1   59       -4
-3  39        6
-5 15         -4
-7 3          3
-91           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=0 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{10}
r=1 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a98.gif

K11a98

K11a100.gif

K11a100