From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n113 at Knotilus!

Knot presentations

Planar diagram presentation X4251 X10,3,11,4 X5,14,6,15 X18,7,19,8 X16,9,17,10 X2,11,3,12 X20,13,21,14 X15,22,16,1 X8,17,9,18 X12,19,13,20 X21,7,22,6
Gauss code 1, -6, 2, -1, -3, 11, 4, -9, 5, -2, 6, -10, 7, 3, -8, -5, 9, -4, 10, -7, -11, 8
Dowker-Thistlethwaite code 4 10 -14 18 16 2 20 -22 8 12 -6
A Braid Representative
A Morse Link Presentation K11n113 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number \{1,2\}
3-genus 2
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11n113/ThurstonBennequinNumber
Hyperbolic Volume 11.0164
A-Polynomial See Data:K11n113/A-polynomial

[edit Notes for K11n113's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 2
Rasmussen s-Invariant 2

[edit Notes for K11n113's four dimensional invariants]

Polynomial invariants

Alexander polynomial -t^2+9 t-15+9 t^{-1} - t^{-2}
Conway polynomial -z^4+5 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 35, -2 }
Jones polynomial  q^{-1} -2 q^{-2} +4 q^{-3} -5 q^{-4} +6 q^{-5} -5 q^{-6} +5 q^{-7} -4 q^{-8} +2 q^{-9} - q^{-10}
HOMFLY-PT polynomial (db, data sources) -a^{10}+2 z^2 a^8+a^8-z^4 a^6-z^2 a^6-a^6+3 z^2 a^4+2 a^4+z^2 a^2
Kauffman polynomial (db, data sources) z^7 a^{11}-5 z^5 a^{11}+8 z^3 a^{11}-4 z a^{11}+2 z^8 a^{10}-9 z^6 a^{10}+11 z^4 a^{10}-4 z^2 a^{10}+a^{10}+z^9 a^9-z^7 a^9-9 z^5 a^9+13 z^3 a^9-3 z a^9+4 z^8 a^8-15 z^6 a^8+13 z^4 a^8-3 z^2 a^8+a^8+z^9 a^7-z^7 a^7-4 z^5 a^7+z^3 a^7+z a^7+2 z^8 a^6-6 z^6 a^6+6 z^4 a^6-5 z^2 a^6+a^6+z^7 a^5-2 z^3 a^5+4 z^4 a^4-5 z^2 a^4+2 a^4+2 z^3 a^3+z^2 a^2
The A2 invariant Data:K11n113/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n113/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {}

Vassiliev invariants

V2 and V3: (5, -12)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
20 -96 200 \frac{1750}{3} \frac{314}{3} -1920 -3840 -672 -640 \frac{4000}{3} 4608 \frac{35000}{3} \frac{6280}{3} \frac{152527}{6} -\frac{1870}{3} \frac{106766}{9} \frac{4597}{18} \frac{10063}{6}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=-2 is the signature of K11n113. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
j \
-1         11
-3        21-1
-5       2  2
-7      32  -1
-9     32   1
-11    23    1
-13   33     0
-15  12      1
-17 13       -2
-19 1        1
-211         -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.