K11n120

From Knot Atlas
Jump to: navigation, search

K11n119.gif

K11n119

K11n121.gif

K11n121

Contents

K11n120.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n120 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,4,11,3 X5,15,6,14 X7,20,8,21 X2,10,3,9 X11,17,12,16 X13,18,14,19 X15,9,16,8 X17,1,18,22 X19,6,20,7 X21,12,22,13
Gauss code 1, -5, 2, -1, -3, 10, -4, 8, 5, -2, -6, 11, -7, 3, -8, 6, -9, 7, -10, 4, -11, 9
Dowker-Thistlethwaite code 4 10 -14 -20 2 -16 -18 -8 -22 -6 -12
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation K11n120 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number \{1,2\}
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11n120/ThurstonBennequinNumber
Hyperbolic Volume 12.7751
A-Polynomial See Data:K11n120/A-polynomial

[edit Notes for K11n120's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 4
Rasmussen s-Invariant -2

[edit Notes for K11n120's four dimensional invariants]

Polynomial invariants

Alexander polynomial -t^4+4 t^3-7 t^2+8 t-7+8 t^{-1} -7 t^{-2} +4 t^{-3} - t^{-4}
Conway polynomial -z^8-4 z^6-3 z^4+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 47, 2 }
Jones polynomial -q^6+3 q^5-5 q^4+7 q^3-8 q^2+8 q-6+5 q^{-1} -3 q^{-2} + q^{-3}
HOMFLY-PT polynomial (db, data sources) -z^8 a^{-2} -6 z^6 a^{-2} +z^6 a^{-4} +z^6-12 z^4 a^{-2} +5 z^4 a^{-4} +4 z^4-10 z^2 a^{-2} +7 z^2 a^{-4} -z^2 a^{-6} +4 z^2-3 a^{-2} +3 a^{-4} - a^{-6} +2
Kauffman polynomial (db, data sources) 2 z^9 a^{-1} +2 z^9 a^{-3} +7 z^8 a^{-2} +3 z^8 a^{-4} +4 z^8+3 a z^7-4 z^7 a^{-1} -6 z^7 a^{-3} +z^7 a^{-5} +a^2 z^6-29 z^6 a^{-2} -13 z^6 a^{-4} -15 z^6-10 a z^5-4 z^5 a^{-1} +5 z^5 a^{-3} -z^5 a^{-5} -3 a^2 z^4+40 z^4 a^{-2} +25 z^4 a^{-4} +3 z^4 a^{-6} +15 z^4+6 a z^3+7 z^3 a^{-1} +3 z^3 a^{-3} +3 z^3 a^{-5} +z^3 a^{-7} +a^2 z^2-20 z^2 a^{-2} -16 z^2 a^{-4} -4 z^2 a^{-6} -7 z^2-a z-2 z a^{-1} -2 z a^{-3} -2 z a^{-5} -z a^{-7} +3 a^{-2} +3 a^{-4} + a^{-6} +2
The A2 invariant q^8-q^6+q^4+1+ q^{-2} -2 q^{-4} +2 q^{-6} -2 q^{-8} +2 q^{-10} + q^{-16} - q^{-18} + q^{-20} - q^{-22}
The G2 invariant Data:K11n120/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {}

Vassiliev invariants

V2 and V3: (0, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
0 8 0 48 24 0 \frac{272}{3} \frac{32}{3} 40 0 32 0 0 168 72 -88 104 -40

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=2 is the signature of K11n120. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-1012345χ
13         1-1
11        2 2
9       31 -2
7      42  2
5     43   -1
3    44    0
1   35     2
-1  23      -1
-3 13       2
-5 2        -2
-71         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n119.gif

K11n119

K11n121.gif

K11n121