K11n15

From Knot Atlas
Jump to: navigation, search

K11n14.gif

K11n14

K11n16.gif

K11n16

Contents

K11n15.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n15 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8394 X10,6,11,5 X7,16,8,17 X2,9,3,10 X11,19,12,18 X13,21,14,20 X15,6,16,7 X17,1,18,22 X19,13,20,12 X21,15,22,14
Gauss code 1, -5, 2, -1, 3, 8, -4, -2, 5, -3, -6, 10, -7, 11, -8, 4, -9, 6, -10, 7, -11, 9
Dowker-Thistlethwaite code 4 8 10 -16 2 -18 -20 -6 -22 -12 -14
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation K11n15 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number \{1,2\}
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11n15/ThurstonBennequinNumber
Hyperbolic Volume 9.94805
A-Polynomial See Data:K11n15/A-polynomial

[edit Notes for K11n15's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 3
Rasmussen s-Invariant -2

[edit Notes for K11n15's four dimensional invariants]

Polynomial invariants

Alexander polynomial t^3-4 t^2+8 t-9+8 t^{-1} -4 t^{-2} + t^{-3}
Conway polynomial z^6+2 z^4+z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 35, 2 }
Jones polynomial -q^8+2 q^7-3 q^6+5 q^5-6 q^4+6 q^3-5 q^2+4 q-2+ q^{-1}
HOMFLY-PT polynomial (db, data sources) z^6 a^{-4} -2 z^4 a^{-2} +5 z^4 a^{-4} -z^4 a^{-6} -6 z^2 a^{-2} +9 z^2 a^{-4} -3 z^2 a^{-6} +z^2-4 a^{-2} +5 a^{-4} -2 a^{-6} +2
Kauffman polynomial (db, data sources) z^9 a^{-3} +z^9 a^{-5} +z^8 a^{-2} +3 z^8 a^{-4} +2 z^8 a^{-6} -5 z^7 a^{-3} -3 z^7 a^{-5} +2 z^7 a^{-7} -5 z^6 a^{-2} -14 z^6 a^{-4} -7 z^6 a^{-6} +2 z^6 a^{-8} +2 z^5 a^{-1} +12 z^5 a^{-3} +4 z^5 a^{-5} -5 z^5 a^{-7} +z^5 a^{-9} +14 z^4 a^{-2} +29 z^4 a^{-4} +10 z^4 a^{-6} -6 z^4 a^{-8} +z^4-4 z^3 a^{-1} -8 z^3 a^{-3} +z^3 a^{-5} +2 z^3 a^{-7} -3 z^3 a^{-9} -15 z^2 a^{-2} -21 z^2 a^{-4} -6 z^2 a^{-6} +3 z^2 a^{-8} -3 z^2+z a^{-1} +z a^{-3} -z a^{-5} +z a^{-9} +4 a^{-2} +5 a^{-4} +2 a^{-6} +2
The A2 invariant q^4+q^2+ q^{-2} -2 q^{-4} +2 q^{-12} +2 q^{-16} - q^{-20} - q^{-24}
The G2 invariant Data:K11n15/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {8_16, 10_156, K11n56, K11n58,}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {9_12,}

Vassiliev invariants

V2 and V3: (1, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
4 24 8 \frac{158}{3} -\frac{38}{3} 96 144 -32 -8 \frac{32}{3} 288 \frac{632}{3} -\frac{152}{3} \frac{20911}{30} \frac{286}{5} \frac{422}{45} -\frac{175}{18} -\frac{689}{30}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=2 is the signature of K11n15. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-101234567χ
17         1-1
15        1 1
13       21 -1
11      31  2
9     32   -1
7    33    0
5   23     1
3  23      -1
1 13       2
-1 1        -1
-31         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n14.gif

K11n14

K11n16.gif

K11n16