K11n25

From Knot Atlas
Jump to: navigation, search

K11n24.gif

K11n24

K11n26.gif

K11n26

Contents

K11n25.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n25 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X12,5,13,6 X2837 X9,15,10,14 X11,18,12,19 X6,13,7,14 X15,21,16,20 X17,1,18,22 X19,10,20,11 X21,17,22,16
Gauss code 1, -4, 2, -1, 3, -7, 4, -2, -5, 10, -6, -3, 7, 5, -8, 11, -9, 6, -10, 8, -11, 9
Dowker-Thistlethwaite code 4 8 12 2 -14 -18 6 -20 -22 -10 -16
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11n25 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number 1
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11n25/ThurstonBennequinNumber
Hyperbolic Volume 12.183
A-Polynomial See Data:K11n25/A-polynomial

[edit Notes for K11n25's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 3
Rasmussen s-Invariant -2

[edit Notes for K11n25's four dimensional invariants]

Polynomial invariants

Alexander polynomial t^3-5 t^2+11 t-13+11 t^{-1} -5 t^{-2} + t^{-3}
Conway polynomial z^6+z^4+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 47, 2 }
Jones polynomial -q^8+3 q^7-5 q^6+7 q^5-8 q^4+8 q^3-7 q^2+5 q-2+ q^{-1}
HOMFLY-PT polynomial (db, data sources) z^6 a^{-4} -2 z^4 a^{-2} +4 z^4 a^{-4} -z^4 a^{-6} -5 z^2 a^{-2} +6 z^2 a^{-4} -2 z^2 a^{-6} +z^2-3 a^{-2} +3 a^{-4} - a^{-6} +2
Kauffman polynomial (db, data sources) z^9 a^{-3} +z^9 a^{-5} +z^8 a^{-2} +4 z^8 a^{-4} +3 z^8 a^{-6} -3 z^7 a^{-3} +z^7 a^{-5} +4 z^7 a^{-7} -4 z^6 a^{-2} -14 z^6 a^{-4} -7 z^6 a^{-6} +3 z^6 a^{-8} +2 z^5 a^{-1} +6 z^5 a^{-3} -7 z^5 a^{-5} -10 z^5 a^{-7} +z^5 a^{-9} +12 z^4 a^{-2} +24 z^4 a^{-4} +6 z^4 a^{-6} -7 z^4 a^{-8} +z^4-3 z^3 a^{-1} +11 z^3 a^{-5} +6 z^3 a^{-7} -2 z^3 a^{-9} -12 z^2 a^{-2} -14 z^2 a^{-4} -3 z^2 a^{-6} +2 z^2 a^{-8} -3 z^2-2 z a^{-3} -4 z a^{-5} -2 z a^{-7} +3 a^{-2} +3 a^{-4} + a^{-6} +2
The A2 invariant q^4+q^2+2 q^{-2} -2 q^{-4} - q^{-10} +2 q^{-12} - q^{-14} +2 q^{-16} - q^{-20} + q^{-22} - q^{-24}
The G2 invariant Data:K11n25/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {9_26,}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {9_25,}

Vassiliev invariants

V2 and V3: (0, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
0 8 0 16 -8 0 -\frac{16}{3} -\frac{160}{3} 8 0 32 0 0 -8 -\frac{568}{3} \frac{344}{3} -\frac{40}{3} 24

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=2 is the signature of K11n25. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-101234567χ
17         1-1
15        2 2
13       31 -2
11      42  2
9     43   -1
7    44    0
5   34     1
3  24      -2
1 14       3
-1 1        -1
-31         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n24.gif

K11n24

K11n26.gif

K11n26