K11n61

From Knot Atlas
Jump to: navigation, search

K11n60.gif

K11n60

K11n62.gif

K11n62

Contents

K11n61.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n61 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X5,15,6,14 X2837 X9,17,10,16 X11,18,12,19 X13,1,14,22 X15,7,16,6 X17,20,18,21 X19,12,20,13 X21,11,22,10
Gauss code 1, -4, 2, -1, -3, 8, 4, -2, -5, 11, -6, 10, -7, 3, -8, 5, -9, 6, -10, 9, -11, 7
Dowker-Thistlethwaite code 4 8 -14 2 -16 -18 -22 -6 -20 -12 -10
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation K11n61 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11n61/ThurstonBennequinNumber
Hyperbolic Volume 8.27514
A-Polynomial See Data:K11n61/A-polynomial

[edit Notes for K11n61's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 4
Rasmussen s-Invariant -4

[edit Notes for K11n61's four dimensional invariants]

Polynomial invariants

Alexander polynomial t^4-3 t^3+4 t^2-t-1- t^{-1} +4 t^{-2} -3 t^{-3} + t^{-4}
Conway polynomial z^8+5 z^6+6 z^4+4 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 17, 4 }
Jones polynomial -q^7+q^6-2 q^5+3 q^4-2 q^3+3 q^2-2 q+2- q^{-1}
HOMFLY-PT polynomial (db, data sources) z^8 a^{-4} -z^6 a^{-2} +7 z^6 a^{-4} -z^6 a^{-6} -5 z^4 a^{-2} +17 z^4 a^{-4} -6 z^4 a^{-6} -6 z^2 a^{-2} +19 z^2 a^{-4} -10 z^2 a^{-6} +z^2 a^{-8} -2 a^{-2} +8 a^{-4} -6 a^{-6} + a^{-8}
Kauffman polynomial (db, data sources) z^9 a^{-3} +z^9 a^{-5} +2 z^8 a^{-2} +4 z^8 a^{-4} +2 z^8 a^{-6} +z^7 a^{-1} -3 z^7 a^{-3} -3 z^7 a^{-5} +z^7 a^{-7} -11 z^6 a^{-2} -23 z^6 a^{-4} -12 z^6 a^{-6} -5 z^5 a^{-1} -5 z^5 a^{-3} -6 z^5 a^{-5} -6 z^5 a^{-7} +17 z^4 a^{-2} +39 z^4 a^{-4} +22 z^4 a^{-6} +6 z^3 a^{-1} +14 z^3 a^{-3} +18 z^3 a^{-5} +10 z^3 a^{-7} -10 z^2 a^{-2} -27 z^2 a^{-4} -18 z^2 a^{-6} -z^2 a^{-8} -2 z a^{-1} -6 z a^{-3} -10 z a^{-5} -6 z a^{-7} +2 a^{-2} +8 a^{-4} +6 a^{-6} + a^{-8}
The A2 invariant -q^2+ q^{-6} +2 q^{-8} +3 q^{-10} + q^{-12} +2 q^{-14} - q^{-16} - q^{-18} -2 q^{-20} - q^{-22} - q^{-26} + q^{-28}
The G2 invariant Data:K11n61/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {10_130,}

Vassiliev invariants

V2 and V3: (4, 6)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
16 48 128 \frac{632}{3} \frac{40}{3} 768 1056 160 80 \frac{2048}{3} 1152 \frac{10112}{3} \frac{640}{3} \frac{82142}{15} \frac{8072}{15} \frac{58328}{45} \frac{322}{9} \frac{1502}{15}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=4 is the signature of K11n61. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-1012345χ
15        1-1
13       110
11      21 -1
9     111 1
7    23   1
5   21    1
3  131    1
1 11      0
-1 1       1
-31        -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3 i=5
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n60.gif

K11n60

K11n62.gif

K11n62