K11n63

From Knot Atlas
Jump to: navigation, search

K11n62.gif

K11n62

K11n64.gif

K11n64

Contents

K11n63.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n63 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X5,15,6,14 X2837 X16,9,17,10 X20,12,21,11 X18,14,19,13 X15,7,16,6 X22,17,1,18 X12,20,13,19 X10,22,11,21
Gauss code 1, -4, 2, -1, -3, 8, 4, -2, 5, -11, 6, -10, 7, 3, -8, -5, 9, -7, 10, -6, 11, -9
Dowker-Thistlethwaite code 4 8 -14 2 16 20 18 -6 22 12 10
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11n63 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11n63/ThurstonBennequinNumber
Hyperbolic Volume 9.89996
A-Polynomial See Data:K11n63/A-polynomial

[edit Notes for K11n63's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 2
Rasmussen s-Invariant -2

[edit Notes for K11n63's four dimensional invariants]

Polynomial invariants

Alexander polynomial -2 t^2+10 t-15+10 t^{-1} -2 t^{-2}
Conway polynomial -2 z^4+2 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 39, 2 }
Jones polynomial -q^{10}+2 q^9-3 q^8+5 q^7-6 q^6+6 q^5-6 q^4+5 q^3-3 q^2+2 q
HOMFLY-PT polynomial (db, data sources) -z^4 a^{-4} -z^4 a^{-6} +2 z^2 a^{-2} -z^2 a^{-4} -z^2 a^{-6} +2 z^2 a^{-8} +2 a^{-2} - a^{-4} - a^{-6} +2 a^{-8} - a^{-10}
Kauffman polynomial (db, data sources) z^9 a^{-7} +z^9 a^{-9} +2 z^8 a^{-6} +4 z^8 a^{-8} +2 z^8 a^{-10} +2 z^7 a^{-5} -z^7 a^{-7} -2 z^7 a^{-9} +z^7 a^{-11} +2 z^6 a^{-4} -4 z^6 a^{-6} -16 z^6 a^{-8} -10 z^6 a^{-10} +z^5 a^{-3} -z^5 a^{-5} -z^5 a^{-7} -4 z^5 a^{-9} -5 z^5 a^{-11} -2 z^4 a^{-4} +3 z^4 a^{-6} +20 z^4 a^{-8} +15 z^4 a^{-10} +z^3 a^{-3} -4 z^3 a^{-5} -5 z^3 a^{-7} +7 z^3 a^{-9} +7 z^3 a^{-11} +3 z^2 a^{-2} +3 z^2 a^{-4} -5 z^2 a^{-6} -12 z^2 a^{-8} -7 z^2 a^{-10} +z a^{-3} +3 z a^{-5} +3 z a^{-7} -z a^{-9} -2 z a^{-11} -2 a^{-2} - a^{-4} + a^{-6} +2 a^{-8} + a^{-10}
The A2 invariant Data:K11n63/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n63/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {9_15, 10_165, K11n101,}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {}

Vassiliev invariants

V2 and V3: (2, 5)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
8 40 32 \frac{604}{3} \frac{92}{3} 320 \frac{2992}{3} \frac{448}{3} 168 \frac{256}{3} 800 \frac{4832}{3} \frac{736}{3} \frac{75151}{15} -\frac{3044}{15} \frac{103684}{45} \frac{881}{9} \frac{4351}{15}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=2 is the signature of K11n63. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
0123456789χ
21         1-1
19        1 1
17       21 -1
15      31  2
13     32   -1
11    33    0
9   33     0
7  23      -1
5 13       2
312        -1
12         2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=0 {\mathbb Z}^{2} {\mathbb Z}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=7 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=9 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n62.gif

K11n62

K11n64.gif

K11n64