K11n88

From Knot Atlas
Jump to: navigation, search

K11n87.gif

K11n87

K11n89.gif

K11n89

Contents

K11n88.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n88 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,3,11,4 X12,6,13,5 X16,8,17,7 X18,10,19,9 X2,11,3,12 X13,21,14,20 X6,16,7,15 X8,18,9,17 X19,1,20,22 X21,15,22,14
Gauss code 1, -6, 2, -1, 3, -8, 4, -9, 5, -2, 6, -3, -7, 11, 8, -4, 9, -5, -10, 7, -11, 10
Dowker-Thistlethwaite code 4 10 12 16 18 2 -20 6 8 -22 -14
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation K11n88 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number 3
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11n88/ThurstonBennequinNumber
Hyperbolic Volume 7.44484
A-Polynomial See Data:K11n88/A-polynomial

[edit Notes for K11n88's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 4
Rasmussen s-Invariant -6

[edit Notes for K11n88's four dimensional invariants]

Polynomial invariants

Alexander polynomial -t^4+3 t^3-2 t^2+1-2 t^{-2} +3 t^{-3} - t^{-4}
Conway polynomial -z^8-5 z^6-4 z^4+3 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 11, 6 }
Jones polynomial -q^8+q^7-q^6+2 q^5-2 q^4+2 q^3-q^2+q
HOMFLY-PT polynomial (db, data sources) -z^8 a^{-6} +z^6 a^{-4} -7 z^6 a^{-6} +z^6 a^{-8} +6 z^4 a^{-4} -16 z^4 a^{-6} +6 z^4 a^{-8} +10 z^2 a^{-4} -15 z^2 a^{-6} +9 z^2 a^{-8} -z^2 a^{-10} +4 a^{-4} -5 a^{-6} +3 a^{-8} - a^{-10}
Kauffman polynomial (db, data sources) z^9 a^{-5} +z^9 a^{-7} +z^8 a^{-4} +3 z^8 a^{-6} +2 z^8 a^{-8} -6 z^7 a^{-5} -5 z^7 a^{-7} +z^7 a^{-9} -7 z^6 a^{-4} -19 z^6 a^{-6} -12 z^6 a^{-8} +10 z^5 a^{-5} +5 z^5 a^{-7} -5 z^5 a^{-9} +16 z^4 a^{-4} +36 z^4 a^{-6} +20 z^4 a^{-8} -4 z^3 a^{-5} +4 z^3 a^{-9} -14 z^2 a^{-4} -24 z^2 a^{-6} -12 z^2 a^{-8} -2 z^2 a^{-10} -z a^{-5} -z a^{-11} +4 a^{-4} +5 a^{-6} +3 a^{-8} + a^{-10}
The A2 invariant  q^{-4} + q^{-6} + q^{-8} + q^{-10} + q^{-18} - q^{-20} - q^{-24} + q^{-32} - q^{-34}
The G2 invariant Data:K11n88/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {7_2,}

Vassiliev invariants

V2 and V3: (3, 6)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
12 48 72 270 66 576 1504 320 304 288 1152 3240 792 \frac{80831}{10} -\frac{1422}{5} \frac{64942}{15} \frac{769}{6} \frac{5951}{10}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=6 is the signature of K11n88. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-1012345χ
17       1-1
15      110
13     11 0
11    111 1
9   11   0
7  11    0
5 12     1
3        0
11       1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=3 i=5 i=7
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{2} {\mathbb Z}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n87.gif

K11n87

K11n89.gif

K11n89