L10a10

From Knot Atlas
Jump to: navigation, search

L10a9.gif

L10a9

L10a11.gif

L10a11

Contents

L10a10.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a10 at Knotilus!


Link Presentations

[edit Notes on L10a10's Link Presentations]

Planar diagram presentation X6172 X10,4,11,3 X12,8,13,7 X18,16,19,15 X16,9,17,10 X8,17,9,18 X20,14,5,13 X14,20,15,19 X2536 X4,12,1,11
Gauss code {1, -9, 2, -10}, {9, -1, 3, -6, 5, -2, 10, -3, 7, -8, 4, -5, 6, -4, 8, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a10 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{2 (t(1)-1) (t(2)-1)^3}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial -q^{13/2}+3 q^{11/2}-6 q^{9/2}+8 q^{7/2}-10 q^{5/2}+11 q^{3/2}-10 \sqrt{q}+\frac{7}{\sqrt{q}}-\frac{5}{q^{3/2}}+\frac{2}{q^{5/2}}-\frac{1}{q^{7/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -z^3 a^{-5} -z a^{-5} - a^{-5} z^{-1} +z^5 a^{-3} +2 z^3 a^{-3} +a^3 z+3 z a^{-3} +a^3 z^{-1} +2 a^{-3} z^{-1} +z^5 a^{-1} -2 a z^3+z^3 a^{-1} -3 a z-a z^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial -z^9 a^{-1} -z^9 a^{-3} -6 z^8 a^{-2} -4 z^8 a^{-4} -2 z^8-2 a z^7-3 z^7 a^{-1} -6 z^7 a^{-3} -5 z^7 a^{-5} -2 a^2 z^6+15 z^6 a^{-2} +9 z^6 a^{-4} -3 z^6 a^{-6} +z^6-a^3 z^5+8 z^5 a^{-1} +21 z^5 a^{-3} +13 z^5 a^{-5} -z^5 a^{-7} +4 a^2 z^4-20 z^4 a^{-2} -9 z^4 a^{-4} +6 z^4 a^{-6} -z^4+3 a^3 z^3+7 a z^3-10 z^3 a^{-1} -27 z^3 a^{-3} -11 z^3 a^{-5} +2 z^3 a^{-7} -a^2 z^2+11 z^2 a^{-2} +4 z^2 a^{-4} -z^2 a^{-6} +5 z^2-3 a^3 z-5 a z+6 z a^{-1} +13 z a^{-3} +5 z a^{-5} -a^2-3 a^{-2} - a^{-4} -2+a^3 z^{-1} +a z^{-1} - a^{-1} z^{-1} -2 a^{-3} z^{-1} - a^{-5} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-10123456χ
14          11
12         2 -2
10        41 3
8       42  -2
6      64   2
4     54    -1
2    56     -1
0   47      3
-2  13       -2
-4 14        3
-6 1         -1
-81          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a9.gif

L10a9

L10a11.gif

L10a11