L10a107

From Knot Atlas
Jump to: navigation, search

L10a106.gif

L10a106

L10a108.gif

L10a108

Contents

L10a107.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a107 at Knotilus!


Link Presentations

[edit Notes on L10a107's Link Presentations]

Planar diagram presentation X10,1,11,2 X20,5,9,6 X14,3,15,4 X4,15,5,16 X16,7,17,8 X18,12,19,11 X12,18,13,17 X2,9,3,10 X8,13,1,14 X6,19,7,20
Gauss code {1, -8, 3, -4, 2, -10, 5, -9}, {8, -1, 6, -7, 9, -3, 4, -5, 7, -6, 10, -2}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a107 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(2)^2 t(1)^3-2 t(2) t(1)^3+2 t(2)^3 t(1)^2-7 t(2)^2 t(1)^2+7 t(2) t(1)^2-3 t(1)^2-3 t(2)^3 t(1)+7 t(2)^2 t(1)-7 t(2) t(1)+2 t(1)-2 t(2)^2+t(2)}{t(1)^{3/2} t(2)^{3/2}} (db)
Jones polynomial \frac{15}{q^{9/2}}-\frac{14}{q^{7/2}}+\frac{11}{q^{5/2}}-\frac{7}{q^{3/2}}-\frac{1}{q^{19/2}}+\frac{3}{q^{17/2}}-\frac{8}{q^{15/2}}+\frac{11}{q^{13/2}}-\frac{14}{q^{11/2}}-\sqrt{q}+\frac{3}{\sqrt{q}} (db)
Signature -3 (db)
HOMFLY-PT polynomial z a^9+a^9 z^{-1} -3 z^3 a^7-4 z a^7-a^7 z^{-1} +2 z^5 a^5+4 z^3 a^5+2 z a^5+z^5 a^3-2 z a^3-z^3 a-z a (db)
Kauffman polynomial a^{11} z^5-2 a^{11} z^3+a^{11} z+3 a^{10} z^6-4 a^{10} z^4+a^{10} z^2+6 a^9 z^7-12 a^9 z^5+12 a^9 z^3-8 a^9 z+a^9 z^{-1} +5 a^8 z^8-3 a^8 z^6-7 a^8 z^4+6 a^8 z^2-a^8+2 a^7 z^9+8 a^7 z^7-21 a^7 z^5+17 a^7 z^3-7 a^7 z+a^7 z^{-1} +10 a^6 z^8-15 a^6 z^6+5 a^6 z^4+a^6 z^2+2 a^5 z^9+7 a^5 z^7-17 a^5 z^5+10 a^5 z^3-a^5 z+5 a^4 z^8-6 a^4 z^6+3 a^4 z^4-2 a^4 z^2+5 a^3 z^7-8 a^3 z^5+5 a^3 z^3-2 a^3 z+3 a^2 z^6-5 a^2 z^4+2 a^2 z^2+a z^5-2 a z^3+a z (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-1012χ
2          11
0         2 -2
-2        51 4
-4       73  -4
-6      74   3
-8     87    -1
-10    67     -1
-12   58      3
-14  36       -3
-16  5        5
-1813         -2
-201          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-8 {\mathbb Z} {\mathbb Z}
r=-7 {\mathbb Z}^{3}
r=-6 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-5 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-4 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a106.gif

L10a106

L10a108.gif

L10a108