From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a109 at Knotilus!

Link Presentations

[edit Notes on L10a109's Link Presentations]

Planar diagram presentation X12,1,13,2 X16,8,17,7 X10,5,1,6 X6374 X4,9,5,10 X18,14,19,13 X20,16,11,15 X14,20,15,19 X2,11,3,12 X8,18,9,17
Gauss code {1, -9, 4, -5, 3, -4, 2, -10, 5, -3}, {9, -1, 6, -8, 7, -2, 10, -6, 8, -7}
A Braid Representative
A Morse Link Presentation L10a109 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (v-1) \left(u^2 v^2+u^2-2 u v^2+u v-2 u+v^2+1\right)}{u^{3/2} v^{3/2}} (db)
Jones polynomial q^{11/2}-3 q^{9/2}+7 q^{7/2}-10 q^{5/2}+11 q^{3/2}-13 \sqrt{q}+\frac{10}{\sqrt{q}}-\frac{9}{q^{3/2}}+\frac{5}{q^{5/2}}-\frac{2}{q^{7/2}}+\frac{1}{q^{9/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial z^5 a^{-3} -a^3 z^3+3 z^3 a^{-3} -3 a^3 z+4 z a^{-3} -2 a^3 z^{-1} +2 a^{-3} z^{-1} -z^7 a^{-1} +2 a z^5-5 z^5 a^{-1} +8 a z^3-11 z^3 a^{-1} +12 a z-13 z a^{-1} +7 a z^{-1} -7 a^{-1} z^{-1} (db)
Kauffman polynomial z^4 a^{-6} -z^2 a^{-6} +3 z^5 a^{-5} -2 z^3 a^{-5} +a^4 z^6+6 z^6 a^{-4} -4 a^4 z^4-8 z^4 a^{-4} +5 a^4 z^2+6 z^2 a^{-4} -2 a^4-2 a^{-4} +2 a^3 z^7+7 z^7 a^{-3} -6 a^3 z^5-11 z^5 a^{-3} +6 a^3 z^3+10 z^3 a^{-3} -4 a^3 z-6 z a^{-3} +2 a^3 z^{-1} +2 a^{-3} z^{-1} +2 a^2 z^8+4 z^8 a^{-2} -a^2 z^6+2 z^6 a^{-2} -11 a^2 z^4-17 z^4 a^{-2} +17 a^2 z^2+20 z^2 a^{-2} -8 a^2-8 a^{-2} +a z^9+z^9 a^{-1} +5 a z^7+10 z^7 a^{-1} -19 a z^5-27 z^5 a^{-1} +21 a z^3+27 z^3 a^{-1} -16 a z-18 z a^{-1} +7 a z^{-1} +7 a^{-1} z^{-1} +6 z^8-6 z^6-15 z^4+25 z^2-13 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
12          1-1
10         2 2
8        51 -4
6       52  3
4      65   -1
2     75    2
0    58     3
-2   45      -1
-4  15       4
-6 14        -3
-8 1         1
-101          -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.