L10a120

From Knot Atlas
Jump to: navigation, search

L10a119.gif

L10a119

L10a121.gif

L10a121

Contents

L10a120.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a120 at Knotilus!


Link Presentations

[edit Notes on L10a120's Link Presentations]

Planar diagram presentation X12,1,13,2 X2,13,3,14 X14,3,15,4 X16,5,17,6 X6,11,7,12 X20,7,11,8 X18,9,19,10 X10,17,1,18 X8,19,9,20 X4,15,5,16
Gauss code {1, -2, 3, -10, 4, -5, 6, -9, 7, -8}, {5, -1, 2, -3, 10, -4, 8, -7, 9, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a120 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u^4 \left(-v^2\right)-u^3 v^3+u^3 v^2-u^3 v-u^2 v^4+u^2 v^3-u^2 v^2+u^2 v-u^2-u v^3+u v^2-u v-v^2}{u^2 v^2} (db)
Jones polynomial -\frac{2}{q^{9/2}}+\frac{1}{q^{7/2}}-\frac{1}{q^{5/2}}-\frac{1}{q^{25/2}}+\frac{1}{q^{23/2}}-\frac{2}{q^{21/2}}+\frac{3}{q^{19/2}}-\frac{4}{q^{17/2}}+\frac{4}{q^{15/2}}-\frac{4}{q^{13/2}}+\frac{3}{q^{11/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial a^{11} z^3+3 a^{11} z+a^{11} z^{-1} -a^9 z^5-4 a^9 z^3-4 a^9 z-a^9 z^{-1} -a^7 z^5-3 a^7 z^3-a^7 z-a^5 z^5-4 a^5 z^3-3 a^5 z (db)
Kauffman polynomial a^{15} z^5-4 a^{15} z^3+3 a^{15} z+a^{14} z^6-3 a^{14} z^4+a^{14} z^2+a^{13} z^7-3 a^{13} z^5+2 a^{13} z^3-a^{13} z+a^{12} z^8-4 a^{12} z^6+6 a^{12} z^4-3 a^{12} z^2+a^{11} z^9-6 a^{11} z^7+15 a^{11} z^5-15 a^{11} z^3+7 a^{11} z-a^{11} z^{-1} +2 a^{10} z^8-10 a^{10} z^6+18 a^{10} z^4-8 a^{10} z^2+a^{10}+a^9 z^9-6 a^9 z^7+15 a^9 z^5-15 a^9 z^3+7 a^9 z-a^9 z^{-1} +a^8 z^8-4 a^8 z^6+6 a^8 z^4-3 a^8 z^2+a^7 z^7-3 a^7 z^5+2 a^7 z^3-a^7 z+a^6 z^6-3 a^6 z^4+a^6 z^2+a^5 z^5-4 a^5 z^3+3 a^5 z (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-10-9-8-7-6-5-4-3-2-10χ
-4          11
-6         110
-8        1  1
-10       21  -1
-12      21   1
-14     22    0
-16    22     0
-18   12      1
-20  12       -1
-22  1        1
-2411         0
-261          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-10 {\mathbb Z} {\mathbb Z}
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a119.gif

L10a119

L10a121.gif

L10a121