L10a137

From Knot Atlas
Jump to: navigation, search

L10a136.gif

L10a136

L10a138.gif

L10a138

Contents

L10a137.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a137 at Knotilus!


Link Presentations

[edit Notes on L10a137's Link Presentations]

Planar diagram presentation X6172 X14,6,15,5 X8493 X2,16,3,15 X16,7,17,8 X18,10,19,9 X4,17,1,18 X12,20,5,19 X20,12,13,11 X10,14,11,13
Gauss code {1, -4, 3, -7}, {2, -1, 5, -3, 6, -10, 9, -8}, {10, -2, 4, -5, 7, -6, 8, -9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L10a137 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) (t(3)-1) \left(t(3) t(2)^2+t(3)^2 t(2)-t(3) t(2)+t(2)+t(3)\right)}{\sqrt{t(1)} t(2)^{3/2} t(3)^{3/2}} (db)
Jones polynomial -q^8+3 q^7-5 q^6+10 q^5-12 q^4+14 q^3-12 q^2+11 q-7+4 q^{-1} - q^{-2} (db)
Signature 2 (db)
HOMFLY-PT polynomial z^6 a^{-2} +z^6 a^{-4} +2 z^4 a^{-2} +3 z^4 a^{-4} -z^4 a^{-6} -z^4+3 z^2 a^{-4} -2 z^2 a^{-6} -z^2- a^{-4} +1+ a^{-2} z^{-2} -2 a^{-4} z^{-2} + a^{-6} z^{-2} (db)
Kauffman polynomial z^5 a^{-9} -2 z^3 a^{-9} +3 z^6 a^{-8} -7 z^4 a^{-8} +4 z^2 a^{-8} +4 z^7 a^{-7} -7 z^5 a^{-7} +3 z^3 a^{-7} +4 z^8 a^{-6} -6 z^6 a^{-6} +3 z^4 a^{-6} +3 z^2 a^{-6} + a^{-6} z^{-2} -3 a^{-6} +2 z^9 a^{-5} +2 z^7 a^{-5} -6 z^5 a^{-5} +3 z^3 a^{-5} +4 z a^{-5} -2 a^{-5} z^{-1} +9 z^8 a^{-4} -19 z^6 a^{-4} +18 z^4 a^{-4} -5 z^2 a^{-4} +2 a^{-4} z^{-2} -4 a^{-4} +2 z^9 a^{-3} +4 z^7 a^{-3} -9 z^5 a^{-3} +z^3 a^{-3} +4 z a^{-3} -2 a^{-3} z^{-1} +5 z^8 a^{-2} -6 z^6 a^{-2} +z^4 a^{-2} -2 z^2 a^{-2} + a^{-2} z^{-2} - a^{-2} +6 z^7 a^{-1} +a z^5-10 z^5 a^{-1} -a z^3+2 z^3 a^{-1} +4 z^6-7 z^4+2 z^2+1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-3-2-101234567χ
17          1-1
15         2 2
13        31 -2
11       72  5
9      75   -2
7     75    2
5    57     2
3   67      -1
1  37       4
-1 14        -3
-3 3         3
-51          -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{7}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a136.gif

L10a136

L10a138.gif

L10a138