L10a141

From Knot Atlas
Jump to: navigation, search

L10a140.gif

L10a140

L10a142.gif

L10a142

Contents

L10a141.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a141 at Knotilus!


Link Presentations

[edit Notes on L10a141's Link Presentations]

Planar diagram presentation X6172 X14,6,15,5 X10,4,11,3 X2,16,3,15 X18,7,19,8 X16,9,17,10 X8,17,9,18 X20,12,13,11 X12,14,5,13 X4,19,1,20
Gauss code {1, -4, 3, -10}, {2, -1, 5, -7, 6, -3, 8, -9}, {9, -2, 4, -6, 7, -5, 10, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a141 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (v-1) (w-1) (v+w) (v w+1)}{\sqrt{u} v^{3/2} w^{3/2}} (db)
Jones polynomial -q^6+3 q^5-6 q^4+9 q^3-9 q^2+11 q-9+8 q^{-1} -4 q^{-2} +3 q^{-3} - q^{-4} (db)
Signature 2 (db)
HOMFLY-PT polynomial -z^4 a^{-4} -2 z^2 a^{-4} - a^{-4} +z^6 a^{-2} -a^2 z^4+3 z^4 a^{-2} -2 a^2 z^2+3 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} +a^2+3 a^{-2} +z^6+3 z^4+z^2-2 z^{-2} -3 (db)
Kauffman polynomial 2 a z^9+2 z^9 a^{-1} +3 a^2 z^8+5 z^8 a^{-2} +8 z^8+a^3 z^7-5 a z^7+2 z^7 a^{-1} +8 z^7 a^{-3} -14 a^2 z^6-5 z^6 a^{-2} +9 z^6 a^{-4} -28 z^6-4 a^3 z^5-a z^5-16 z^5 a^{-1} -13 z^5 a^{-3} +6 z^5 a^{-5} +20 a^2 z^4-12 z^4 a^{-2} -15 z^4 a^{-4} +3 z^4 a^{-6} +26 z^4+4 a^3 z^3+5 a z^3+7 z^3 a^{-1} +z^3 a^{-3} -4 z^3 a^{-5} +z^3 a^{-7} -7 a^2 z^2+13 z^2 a^{-2} +9 z^2 a^{-4} -3 z^2+a z+3 z a^{-1} +3 z a^{-3} +z a^{-5} -2 a^2-6 a^{-2} -2 a^{-4} -5-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-1012345χ
13          1-1
11         2 2
9        41 -3
7       52  3
5      44   0
3     75    2
1    68     2
-1   23      -1
-3  26       4
-5 12        -1
-7 2         2
-91          -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a140.gif

L10a140

L10a142.gif

L10a142