L10a161

From Knot Atlas
Jump to: navigation, search

L10a160.gif

L10a160

L10a162.gif

L10a162

Contents

L10a161.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a161 at Knotilus!


Link Presentations

[edit Notes on L10a161's Link Presentations]

Planar diagram presentation X8192 X14,4,15,3 X10,20,11,19 X18,10,19,9 X20,12,13,11 X12,14,7,13 X16,6,17,5 X2738 X4,16,5,15 X6,18,1,17
Gauss code {1, -8, 2, -9, 7, -10}, {8, -1, 4, -3, 5, -6}, {6, -2, 9, -7, 10, -4, 3, -5}
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L10a161 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1)^2 t(2)^2 t(3)^3-t(1) t(2)^2 t(3)^3-t(1)^2 t(2) t(3)^3-t(1)^2 t(3)^2+t(1) t(2)^2 t(3)^2-t(2)^2 t(3)^2+t(1)^2 t(2) t(3)^2-t(1) t(2) t(3)^2+t(1)^2 t(3)+t(2)^2 t(3)-t(1) t(3)+t(1) t(2) t(3)-t(2) t(3)+t(1)+t(2)-1}{t(1) t(2) t(3)^{3/2}} (db)
Jones polynomial q^{11}-2 q^{10}+3 q^9-4 q^8+5 q^7-4 q^6+5 q^5-3 q^4+3 q^3-q^2+q (db)
Signature 6 (db)
HOMFLY-PT polynomial z^6 a^{-8} +5 z^4 a^{-8} +7 z^2 a^{-8} + a^{-8} z^{-2} +3 a^{-8} -z^8 a^{-6} -7 z^6 a^{-6} -17 z^4 a^{-6} -18 z^2 a^{-6} -2 a^{-6} z^{-2} -9 a^{-6} +z^6 a^{-4} +6 z^4 a^{-4} +11 z^2 a^{-4} + a^{-4} z^{-2} +6 a^{-4} (db)
Kauffman polynomial z^9 a^{-5} +z^9 a^{-7} +z^8 a^{-4} +4 z^8 a^{-6} +3 z^8 a^{-8} -5 z^7 a^{-5} -z^7 a^{-7} +4 z^7 a^{-9} -7 z^6 a^{-4} -23 z^6 a^{-6} -11 z^6 a^{-8} +5 z^6 a^{-10} +5 z^5 a^{-5} -11 z^5 a^{-7} -12 z^5 a^{-9} +4 z^5 a^{-11} +17 z^4 a^{-4} +43 z^4 a^{-6} +9 z^4 a^{-8} -14 z^4 a^{-10} +3 z^4 a^{-12} +6 z^3 a^{-5} +20 z^3 a^{-7} +6 z^3 a^{-9} -6 z^3 a^{-11} +2 z^3 a^{-13} -17 z^2 a^{-4} -32 z^2 a^{-6} -3 z^2 a^{-8} +9 z^2 a^{-10} -2 z^2 a^{-12} +z^2 a^{-14} -9 z a^{-5} -9 z a^{-7} +7 a^{-4} +11 a^{-6} +3 a^{-8} -2 a^{-10} +2 a^{-5} z^{-1} +2 a^{-7} z^{-1} - a^{-4} z^{-2} -2 a^{-6} z^{-2} - a^{-8} z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-1012345678χ
23          11
21         21-1
19        1  1
17       32  -1
15      21   1
13     23    1
11    32     1
9   24      2
7  11       0
5 13        2
3           0
11          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=5 i=7
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{3} {\mathbb Z}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=7 {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=8 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a160.gif

L10a160

L10a162.gif

L10a162