L10a19

From Knot Atlas
Jump to: navigation, search

L10a18.gif

L10a18

L10a20.gif

L10a20

Contents

L10a19.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a19 at Knotilus!


Link Presentations

[edit Notes on L10a19's Link Presentations]

Planar diagram presentation X6172 X10,4,11,3 X12,10,13,9 X18,15,19,16 X16,7,17,8 X8,17,9,18 X20,13,5,14 X14,19,15,20 X2536 X4,12,1,11
Gauss code {1, -9, 2, -10}, {9, -1, 5, -6, 3, -2, 10, -3, 7, -8, 4, -5, 6, -4, 8, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a19 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 (t(1)-1) (t(2)-1)^3}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial q^{5/2}-3 q^{3/2}+5 \sqrt{q}-\frac{9}{\sqrt{q}}+\frac{10}{q^{3/2}}-\frac{11}{q^{5/2}}+\frac{9}{q^{7/2}}-\frac{8}{q^{9/2}}+\frac{5}{q^{11/2}}-\frac{2}{q^{13/2}}+\frac{1}{q^{15/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^7 (-z)-a^7 z^{-1} +2 a^5 z^3+3 a^5 z+2 a^5 z^{-1} -a^3 z^5-a^3 z^3-a z^5-2 a z^3+z^3 a^{-1} -3 a z-a z^{-1} +z a^{-1} (db)
Kauffman polynomial a^8 z^6-4 a^8 z^4+5 a^8 z^2-2 a^8+2 a^7 z^7-6 a^7 z^5+5 a^7 z^3-2 a^7 z+a^7 z^{-1} +2 a^6 z^8-2 a^6 z^6-8 a^6 z^4+12 a^6 z^2-5 a^6+a^5 z^9+3 a^5 z^7-12 a^5 z^5+9 a^5 z^3-5 a^5 z+2 a^5 z^{-1} +5 a^4 z^8-7 a^4 z^6-4 a^4 z^4+8 a^4 z^2-3 a^4+a^3 z^9+5 a^3 z^7-10 a^3 z^5+3 a^3 z^3+3 a^2 z^8-4 a^2 z^4+z^4 a^{-2} +2 a^2 z^2-z^2 a^{-2} +a^2+4 a z^7-a z^5+3 z^5 a^{-1} -5 a z^3-4 z^3 a^{-1} +5 a z+2 z a^{-1} -a z^{-1} +4 z^6-3 z^4 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-10123χ
6          1-1
4         2 2
2        31 -2
0       62  4
-2      65   -1
-4     54    1
-6    46     2
-8   45      -1
-10  14       3
-12 14        -3
-14 1         1
-161          -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a18.gif

L10a18

L10a20.gif

L10a20