L10a21

From Knot Atlas
Jump to: navigation, search

L10a20.gif

L10a20

L10a22.gif

L10a22

Contents

L10a21.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a21 at Knotilus!


Link Presentations

[edit Notes on L10a21's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X18,15,19,16 X16,10,17,9 X8,18,9,17 X4,19,1,20 X12,6,13,5 X10,4,11,3 X20,12,5,11 X2,14,3,13
Gauss code {1, -10, 8, -6}, {7, -1, 2, -5, 4, -8, 9, -7, 10, -2, 3, -4, 5, -3, 6, -9}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a21 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (v-1)^3 \left(v^2-v+1\right)}{\sqrt{u} v^{5/2}} (db)
Jones polynomial -8 q^{9/2}+12 q^{7/2}-\frac{1}{q^{7/2}}-15 q^{5/2}+\frac{4}{q^{5/2}}+16 q^{3/2}-\frac{8}{q^{3/2}}-q^{13/2}+4 q^{11/2}-16 \sqrt{q}+\frac{11}{\sqrt{q}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -z^7 a^{-1} +a z^5-4 z^5 a^{-1} +2 z^5 a^{-3} +2 a z^3-6 z^3 a^{-1} +5 z^3 a^{-3} -z^3 a^{-5} +a z-3 z a^{-1} +3 z a^{-3} -z a^{-5} +a z^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial -2 z^9 a^{-1} -2 z^9 a^{-3} -12 z^8 a^{-2} -6 z^8 a^{-4} -6 z^8-7 a z^7-12 z^7 a^{-1} -12 z^7 a^{-3} -7 z^7 a^{-5} -4 a^2 z^6+19 z^6 a^{-2} +5 z^6 a^{-4} -4 z^6 a^{-6} +6 z^6-a^3 z^5+13 a z^5+32 z^5 a^{-1} +31 z^5 a^{-3} +12 z^5 a^{-5} -z^5 a^{-7} +6 a^2 z^4-7 z^4 a^{-2} +4 z^4 a^{-4} +6 z^4 a^{-6} +z^4+a^3 z^3-8 a z^3-25 z^3 a^{-1} -23 z^3 a^{-3} -6 z^3 a^{-5} +z^3 a^{-7} -a^2 z^2-z^2 a^{-2} -3 z^2 a^{-4} -2 z^2 a^{-6} -z^2+2 a z+6 z a^{-1} +6 z a^{-3} +2 z a^{-5} +1-a z^{-1} - a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-10123456χ
14          11
12         3 -3
10        51 4
8       73  -4
6      85   3
4     87    -1
2    88     0
0   510      5
-2  36       -3
-4 15        4
-6 3         -3
-81          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{8}
r=1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a20.gif

L10a20

L10a22.gif

L10a22