L10a25

From Knot Atlas
Jump to: navigation, search

L10a24.gif

L10a24

L10a26.gif

L10a26

Contents

L10a25.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a25 at Knotilus!


Link Presentations

[edit Notes on L10a25's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X20,13,5,14 X14,7,15,8 X18,15,19,16 X16,10,17,9 X8,18,9,17 X10,19,11,20 X2536 X4,11,1,12
Gauss code {1, -9, 2, -10}, {9, -1, 4, -7, 6, -8, 10, -2, 3, -4, 5, -6, 7, -5, 8, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a25 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{2 u v^4-6 u v^3+6 u v^2-4 u v+u+v^5-4 v^4+6 v^3-6 v^2+2 v}{\sqrt{u} v^{5/2}} (db)
Jones polynomial \frac{13}{q^{9/2}}-\frac{12}{q^{7/2}}+\frac{9}{q^{5/2}}-\frac{7}{q^{3/2}}-\frac{1}{q^{19/2}}+\frac{3}{q^{17/2}}-\frac{6}{q^{15/2}}+\frac{9}{q^{13/2}}-\frac{12}{q^{11/2}}-\sqrt{q}+\frac{3}{\sqrt{q}} (db)
Signature -3 (db)
HOMFLY-PT polynomial z a^9+a^9 z^{-1} -3 z^3 a^7-6 z a^7-3 a^7 z^{-1} +2 z^5 a^5+6 z^3 a^5+8 z a^5+4 a^5 z^{-1} +z^5 a^3-4 z a^3-2 a^3 z^{-1} -z^3 a-z a (db)
Kauffman polynomial -z^5 a^{11}+2 z^3 a^{11}-z a^{11}-3 z^6 a^{10}+6 z^4 a^{10}-3 z^2 a^{10}+a^{10}-4 z^7 a^9+6 z^5 a^9-2 z^3 a^9+2 z a^9-a^9 z^{-1} -3 z^8 a^8-z^6 a^8+11 z^4 a^8-10 z^2 a^8+3 a^8-z^9 a^7-9 z^7 a^7+25 z^5 a^7-27 z^3 a^7+13 z a^7-3 a^7 z^{-1} -7 z^8 a^6+9 z^6 a^6+2 z^4 a^6-10 z^2 a^6+3 a^6-z^9 a^5-10 z^7 a^5+29 z^5 a^5-33 z^3 a^5+18 z a^5-4 a^5 z^{-1} -4 z^8 a^4+4 z^6 a^4+2 z^4 a^4-4 z^2 a^4+2 a^4-5 z^7 a^3+10 z^5 a^3-8 z^3 a^3+7 z a^3-2 a^3 z^{-1} -3 z^6 a^2+5 z^4 a^2-z^2 a^2-z^5 a+2 z^3 a-z a (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-1012χ
2          11
0         2 -2
-2        51 4
-4       53  -2
-6      74   3
-8     65    -1
-10    67     -1
-12   47      3
-14  25       -3
-16 14        3
-18 2         -2
-201          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-8 {\mathbb Z}
r=-7 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-4 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=-3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a24.gif

L10a24

L10a26.gif

L10a26