L10a26

From Knot Atlas
Jump to: navigation, search

L10a25.gif

L10a25

L10a27.gif

L10a27

Contents

L10a26.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a26 at Knotilus!


Link Presentations

[edit Notes on L10a26's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X20,13,5,14 X14,7,15,8 X8,19,9,20 X16,10,17,9 X18,16,19,15 X10,18,11,17 X2536 X4,11,1,12
Gauss code {1, -9, 2, -10}, {9, -1, 4, -5, 6, -8, 10, -2, 3, -4, 7, -6, 8, -7, 5, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a26 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(2)^5+2 t(1) t(2)^4-4 t(2)^4-6 t(1) t(2)^3+8 t(2)^3+8 t(1) t(2)^2-6 t(2)^2-4 t(1) t(2)+2 t(2)+t(1)}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial -\frac{10}{q^{9/2}}+\frac{12}{q^{7/2}}+q^{5/2}-\frac{15}{q^{5/2}}-4 q^{3/2}+\frac{13}{q^{3/2}}+\frac{1}{q^{15/2}}-\frac{3}{q^{13/2}}+\frac{6}{q^{11/2}}+8 \sqrt{q}-\frac{11}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial -z a^7-a^7 z^{-1} +3 z^3 a^5+6 z a^5+4 a^5 z^{-1} -2 z^5 a^3-6 z^3 a^3-9 z a^3-4 a^3 z^{-1} -z^5 a+2 z a+a z^{-1} +z^3 a^{-1} (db)
Kauffman polynomial -a^5 z^9-a^3 z^9-3 a^6 z^8-8 a^4 z^8-5 a^2 z^8-3 a^7 z^7-10 a^5 z^7-16 a^3 z^7-9 a z^7-a^8 z^6+3 a^6 z^6+8 a^4 z^6-4 a^2 z^6-8 z^6+9 a^7 z^5+34 a^5 z^5+41 a^3 z^5+12 a z^5-4 z^5 a^{-1} +3 a^8 z^4+9 a^6 z^4+16 a^4 z^4+20 a^2 z^4-z^4 a^{-2} +9 z^4-9 a^7 z^3-34 a^5 z^3-34 a^3 z^3-7 a z^3+2 z^3 a^{-1} -3 a^8 z^2-13 a^6 z^2-21 a^4 z^2-14 a^2 z^2-3 z^2+4 a^7 z+16 a^5 z+15 a^3 z+3 a z+a^8+4 a^6+7 a^4+4 a^2+1-a^7 z^{-1} -4 a^5 z^{-1} -4 a^3 z^{-1} -a z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-10123χ
6          1-1
4         3 3
2        51 -4
0       63  3
-2      86   -2
-4     75    2
-6    58     3
-8   57      -2
-10  26       4
-12 14        -3
-14 2         2
-161          -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=-3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a25.gif

L10a25

L10a27.gif

L10a27