L10a3

From Knot Atlas
Jump to: navigation, search

L10a2.gif

L10a2

L10a4.gif

L10a4

Contents

L10a3.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a3 at Knotilus!


Link Presentations

[edit Notes on L10a3's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X4,17,1,18 X14,10,15,9 X8493 X10,5,11,6 X20,11,5,12 X18,13,19,14 X12,19,13,20 X2,16,3,15
Gauss code {1, -10, 5, -3}, {6, -1, 2, -5, 4, -6, 7, -9, 8, -4, 10, -2, 3, -8, 9, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a3 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)-2) (t(2)-1) (2 t(2)-1)}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial q^{5/2}-4 q^{3/2}+6 \sqrt{q}-\frac{10}{\sqrt{q}}+\frac{11}{q^{3/2}}-\frac{12}{q^{5/2}}+\frac{11}{q^{7/2}}-\frac{8}{q^{9/2}}+\frac{5}{q^{11/2}}-\frac{3}{q^{13/2}}+\frac{1}{q^{15/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial -z a^7+2 z^3 a^5+2 z a^5-z^5 a^3-z^3 a^3-z a^3-z^5 a-z^3 a+a z^{-1} +z^3 a^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial -2 a^5 z^9-2 a^3 z^9-4 a^6 z^8-9 a^4 z^8-5 a^2 z^8-3 a^7 z^7-3 a^3 z^7-6 a z^7-a^8 z^6+13 a^6 z^6+27 a^4 z^6+7 a^2 z^6-6 z^6+10 a^7 z^5+14 a^5 z^5+13 a^3 z^5+5 a z^5-4 z^5 a^{-1} +3 a^8 z^4-12 a^6 z^4-28 a^4 z^4-6 a^2 z^4-z^4 a^{-2} +6 z^4-8 a^7 z^3-17 a^5 z^3-11 a^3 z^3+2 a z^3+4 z^3 a^{-1} -a^8 z^2+4 a^6 z^2+9 a^4 z^2+4 a^2 z^2+2 a^7 z+4 a^5 z+2 a^3 z+1-a z^{-1} - a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-10123χ
6          1-1
4         3 3
2        31 -2
0       73  4
-2      65   -1
-4     65    1
-6    56     1
-8   36      -3
-10  25       3
-12 13        -2
-14 2         2
-161          -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a2.gif

L10a2

L10a4.gif

L10a4