L10a34

From Knot Atlas
Jump to: navigation, search

L10a33.gif

L10a33

L10a35.gif

L10a35

Contents

L10a34.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a34 at Knotilus!


Link Presentations

[edit Notes on L10a34's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X16,8,17,7 X20,18,5,17 X18,9,19,10 X8,19,9,20 X14,12,15,11 X10,16,11,15 X2536 X4,14,1,13
Gauss code {1, -9, 2, -10}, {9, -1, 3, -6, 5, -8, 7, -2, 10, -7, 8, -3, 4, -5, 6, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a34 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-2) (t(2)-1) (2 t(2)-1)}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial -7 q^{9/2}+9 q^{7/2}-\frac{1}{q^{7/2}}-12 q^{5/2}+\frac{2}{q^{5/2}}+12 q^{3/2}-\frac{5}{q^{3/2}}-q^{13/2}+4 q^{11/2}-11 \sqrt{q}+\frac{8}{\sqrt{q}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -z^3 a^{-5} +z^5 a^{-3} +z^3 a^{-3} +a^3 z+a^3 z^{-1} - a^{-3} z^{-1} +z^5 a^{-1} -2 a z^3+z^3 a^{-1} -3 a z+2 z a^{-1} -2 a z^{-1} +2 a^{-1} z^{-1} (db)
Kauffman polynomial -z^9 a^{-1} -z^9 a^{-3} -6 z^8 a^{-2} -4 z^8 a^{-4} -2 z^8-2 a z^7-4 z^7 a^{-1} -8 z^7 a^{-3} -6 z^7 a^{-5} -2 a^2 z^6+8 z^6 a^{-2} +3 z^6 a^{-4} -4 z^6 a^{-6} -z^6-a^3 z^5-a z^5+5 z^5 a^{-1} +18 z^5 a^{-3} +12 z^5 a^{-5} -z^5 a^{-7} +4 a^2 z^4-3 z^4 a^{-2} +4 z^4 a^{-4} +7 z^4 a^{-6} +4 z^4+3 a^3 z^3+9 a z^3+2 z^3 a^{-1} -10 z^3 a^{-3} -5 z^3 a^{-5} +z^3 a^{-7} -2 a^2 z^2-z^2 a^{-2} -2 z^2 a^{-4} -z^2 a^{-6} -2 z^2-3 a^3 z-8 a z-6 z a^{-1} -z a^{-3} +1+a^3 z^{-1} +2 a z^{-1} +2 a^{-1} z^{-1} + a^{-3} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-10123456χ
14          11
12         3 -3
10        41 3
8       53  -2
6      74   3
4     55    0
2    67     -1
0   47      3
-2  14       -3
-4 14        3
-6 1         -1
-81          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a33.gif

L10a33

L10a35.gif

L10a35