L10a36

From Knot Atlas
Jump to: navigation, search

L10a35.gif

L10a35

L10a37.gif

L10a37

Contents

L10a36.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a36 at Knotilus!


Link Presentations

[edit Notes on L10a36's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X14,12,15,11 X20,15,5,16 X16,7,17,8 X8,19,9,20 X18,9,19,10 X10,17,11,18 X2536 X4,14,1,13
Gauss code {1, -9, 2, -10}, {9, -1, 5, -6, 7, -8, 3, -2, 10, -3, 4, -5, 8, -7, 6, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L10a36 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (v-2) (v-1) (2 v-1)}{\sqrt{u} v^{3/2}} (db)
Jones polynomial q^{5/2}-4 q^{3/2}+7 \sqrt{q}-\frac{10}{\sqrt{q}}+\frac{11}{q^{3/2}}-\frac{13}{q^{5/2}}+\frac{10}{q^{7/2}}-\frac{8}{q^{9/2}}+\frac{5}{q^{11/2}}-\frac{2}{q^{13/2}}+\frac{1}{q^{15/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial -z a^7-a^7 z^{-1} +2 z^3 a^5+3 z a^5+2 a^5 z^{-1} -z^5 a^3-z^3 a^3-z a^3-z^5 a-z^3 a-z a-a z^{-1} +z^3 a^{-1} (db)
Kauffman polynomial a^8 z^6-4 a^8 z^4+5 a^8 z^2-2 a^8+2 a^7 z^7-6 a^7 z^5+5 a^7 z^3-2 a^7 z+a^7 z^{-1} +2 a^6 z^8-2 a^6 z^6-7 a^6 z^4+11 a^6 z^2-5 a^6+a^5 z^9+4 a^5 z^7-15 a^5 z^5+13 a^5 z^3-5 a^5 z+2 a^5 z^{-1} +6 a^4 z^8-9 a^4 z^6-2 a^4 z^4+7 a^4 z^2-3 a^4+a^3 z^9+9 a^3 z^7-21 a^3 z^5+13 a^3 z^3-2 a^3 z+4 a^2 z^8+a^2 z^6-8 a^2 z^4+z^4 a^{-2} +2 a^2 z^2+a^2+7 a z^7-8 a z^5+4 z^5 a^{-1} +2 a z^3-3 z^3 a^{-1} +a z-a z^{-1} +7 z^6-8 z^4+z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-10123χ
6          1-1
4         3 3
2        41 -3
0       63  3
-2      76   -1
-4     64    2
-6    47     3
-8   46      -2
-10  14       3
-12 14        -3
-14 1         1
-161          -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a35.gif

L10a35

L10a37.gif

L10a37