L10a46

From Knot Atlas
Jump to: navigation, search

L10a45.gif

L10a45

L10a47.gif

L10a47

Contents

L10a46.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a46 at Knotilus!

Link Presentations

[edit Notes on L10a46's Link Presentations]

Planar diagram presentation X6172 X14,3,15,4 X18,8,19,7 X20,10,5,9 X8,20,9,19 X12,18,13,17 X16,12,17,11 X10,16,11,15 X2536 X4,13,1,14
Gauss code {1, -9, 2, -10}, {9, -1, 3, -5, 4, -8, 7, -6, 10, -2, 8, -7, 6, -3, 5, -4}
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a46 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{\left(t(2)^2-t(2)+1\right) \left(t(1) t(2)^3-2 t(2)^3-t(1) t(2)^2+t(2)^2+t(1) t(2)-t(2)-2 t(1)+1\right)}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial 9 q^{9/2}-9 q^{7/2}+10 q^{5/2}-\frac{1}{q^{5/2}}-9 q^{3/2}+\frac{1}{q^{3/2}}-q^{15/2}+3 q^{13/2}-6 q^{11/2}+6 \sqrt{q}-\frac{5}{\sqrt{q}} (db)
Signature 3 (db)
HOMFLY-PT polynomial -z^5 a^{-5} -3 z^3 a^{-5} -3 z a^{-5} - a^{-5} z^{-1} +z^7 a^{-3} +5 z^5 a^{-3} +10 z^3 a^{-3} +11 z a^{-3} +5 a^{-3} z^{-1} -2 z^5 a^{-1} +a z^3-9 z^3 a^{-1} +4 a z-14 z a^{-1} +4 a z^{-1} -8 a^{-1} z^{-1} (db)
Kauffman polynomial z^3 a^{-9} +3 z^4 a^{-8} +6 z^5 a^{-7} -4 z^3 a^{-7} +z a^{-7} +9 z^6 a^{-6} -15 z^4 a^{-6} +9 z^2 a^{-6} -2 a^{-6} +8 z^7 a^{-5} -14 z^5 a^{-5} +4 z^3 a^{-5} + a^{-5} z^{-1} +4 z^8 a^{-4} -22 z^4 a^{-4} +23 z^2 a^{-4} -9 a^{-4} +z^9 a^{-3} +7 z^7 a^{-3} -26 z^5 a^{-3} +20 z^3 a^{-3} -9 z a^{-3} +5 a^{-3} z^{-1} +5 z^8 a^{-2} -11 z^6 a^{-2} -9 z^4 a^{-2} +28 z^2 a^{-2} -14 a^{-2} +z^9 a^{-1} +a z^7-6 a z^5-12 z^5 a^{-1} +13 a z^3+24 z^3 a^{-1} -12 a z-20 z a^{-1} +4 a z^{-1} +8 a^{-1} z^{-1} +z^8-2 z^6-5 z^4+14 z^2-8 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-10123456χ
16          11
14         2 -2
12        41 3
10       52  -3
8      44   0
6     65    -1
4    34     -1
2   47      3
0  12       -1
-2  4        4
-411         0
-61          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a45.gif

L10a45

L10a47.gif

L10a47