L10a57

From Knot Atlas
Jump to: navigation, search

L10a56.gif

L10a56

L10a58.gif

L10a58

Contents

L10a57.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a57 at Knotilus!


Link Presentations

[edit Notes on L10a57's Link Presentations]

Planar diagram presentation X8192 X10,3,11,4 X14,6,15,5 X16,11,17,12 X20,17,7,18 X18,14,19,13 X12,20,13,19 X4,16,5,15 X2738 X6,9,1,10
Gauss code {1, -9, 2, -8, 3, -10}, {9, -1, 10, -2, 4, -7, 6, -3, 8, -4, 5, -6, 7, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a57 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{-t(1) t(2)^4+t(2)^4-t(1)^2 t(2)^3+5 t(1) t(2)^3-3 t(2)^3+3 t(1)^2 t(2)^2-9 t(1) t(2)^2+3 t(2)^2-3 t(1)^2 t(2)+5 t(1) t(2)-t(2)+t(1)^2-t(1)}{t(1) t(2)^2} (db)
Jones polynomial -\frac{6}{q^{9/2}}-q^{7/2}+\frac{9}{q^{7/2}}+3 q^{5/2}-\frac{12}{q^{5/2}}-6 q^{3/2}+\frac{12}{q^{3/2}}-\frac{1}{q^{13/2}}+\frac{3}{q^{11/2}}+9 \sqrt{q}-\frac{12}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial z^3 a^5+z a^5+a^5 z^{-1} -z^5 a^3-2 z^3 a^3-4 z a^3-2 a^3 z^{-1} -z^5 a+2 z a+2 a z^{-1} +2 z^3 a^{-1} +z a^{-1} - a^{-1} z^{-1} -z a^{-3} (db)
Kauffman polynomial a^7 z^5-2 a^7 z^3+3 a^6 z^6-6 a^6 z^4+2 a^6 z^2+5 a^5 z^7-12 a^5 z^5+11 a^5 z^3-5 a^5 z+a^5 z^{-1} +4 a^4 z^8-6 a^4 z^6+3 a^4 z^4+a^3 z^9+9 a^3 z^7-27 a^3 z^5+z^5 a^{-3} +31 a^3 z^3-2 z^3 a^{-3} -14 a^3 z+z a^{-3} +2 a^3 z^{-1} +7 a^2 z^8-12 a^2 z^6+3 z^6 a^{-2} +9 a^2 z^4-6 z^4 a^{-2} -3 a^2 z^2+3 z^2 a^{-2} +a^2+a z^9+8 a z^7+4 z^7 a^{-1} -21 a z^5-6 z^5 a^{-1} +22 a z^3+2 z^3 a^{-1} -12 a z-2 z a^{-1} +2 a z^{-1} + a^{-1} z^{-1} +3 z^8-6 z^4+2 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-101234χ
8          11
6         2 -2
4        41 3
2       52  -3
0      74   3
-2     66    0
-4    66     0
-6   47      3
-8  25       -3
-10 14        3
-12 2         -2
-141          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a56.gif

L10a56

L10a58.gif

L10a58