L10a75

From Knot Atlas
Jump to: navigation, search

L10a74.gif

L10a74

L10a76.gif

L10a76

Contents

L10a75.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a75 at Knotilus!


Link Presentations

[edit Notes on L10a75's Link Presentations]

Planar diagram presentation X8192 X2,9,3,10 X10,3,11,4 X16,5,17,6 X20,11,7,12 X18,13,19,14 X14,17,15,18 X12,19,13,20 X6718 X4,15,5,16
Gauss code {1, -2, 3, -10, 4, -9}, {9, -1, 2, -3, 5, -8, 6, -7, 10, -4, 7, -6, 8, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L10a75 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{3 u^2 v^2-2 u^2 v-2 u v^2+5 u v-2 u-2 v+3}{u v} (db)
Jones polynomial -\frac{1}{q^{5/2}}+\frac{1}{q^{7/2}}-\frac{3}{q^{9/2}}+\frac{4}{q^{11/2}}-\frac{6}{q^{13/2}}+\frac{6}{q^{15/2}}-\frac{6}{q^{17/2}}+\frac{5}{q^{19/2}}-\frac{3}{q^{21/2}}+\frac{2}{q^{23/2}}-\frac{1}{q^{25/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial z^3 a^{11}+2 z a^{11}-z^5 a^9-3 z^3 a^9-2 z a^9-z^5 a^7-2 z^3 a^7+z a^7+a^7 z^{-1} -z^5 a^5-4 z^3 a^5-4 z a^5-a^5 z^{-1} (db)
Kauffman polynomial a^{15} z^5-3 a^{15} z^3+a^{15} z+2 a^{14} z^6-6 a^{14} z^4+3 a^{14} z^2+2 a^{13} z^7-5 a^{13} z^5+2 a^{13} z^3+2 a^{12} z^8-7 a^{12} z^6+10 a^{12} z^4-5 a^{12} z^2+a^{11} z^9-3 a^{11} z^7+5 a^{11} z^5-2 a^{11} z^3+a^{11} z+3 a^{10} z^8-12 a^{10} z^6+20 a^{10} z^4-8 a^{10} z^2+a^9 z^9-4 a^9 z^7+9 a^9 z^5-6 a^9 z^3+a^9 z+a^8 z^8-2 a^8 z^6+2 a^8 z^4-a^8 z^2+a^7 z^7-a^7 z^5-3 a^7 z^3+3 a^7 z-a^7 z^{-1} +a^6 z^6-2 a^6 z^4-a^6 z^2+a^6+a^5 z^5-4 a^5 z^3+4 a^5 z-a^5 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-10-9-8-7-6-5-4-3-2-10χ
-4          11
-6         110
-8        2  2
-10       21  -1
-12      42   2
-14     22    0
-16    44     0
-18   23      1
-20  13       -2
-22 12        1
-24 1         -1
-261          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-10 {\mathbb Z}
r=-9 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-8 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a74.gif

L10a74

L10a76.gif

L10a76