L10a77

From Knot Atlas
Jump to: navigation, search

L10a76.gif

L10a76

L10a78.gif

L10a78

Contents

L10a77.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a77 at Knotilus!


Link Presentations

[edit Notes on L10a77's Link Presentations]

Planar diagram presentation X8192 X2,9,3,10 X10,3,11,4 X16,5,17,6 X14,7,15,8 X18,11,19,12 X20,15,7,16 X12,17,13,18 X4,13,5,14 X6,19,1,20
Gauss code {1, -2, 3, -9, 4, -10}, {5, -1, 2, -3, 6, -8, 9, -5, 7, -4, 8, -6, 10, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a77 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{4 u^2 v^3-4 u^2 v^2+u^2 v+u v^4-5 u v^3+9 u v^2-5 u v+u+v^3-4 v^2+4 v}{u v^2} (db)
Jones polynomial -\frac{7}{q^{9/2}}+\frac{3}{q^{7/2}}-\frac{1}{q^{5/2}}-\frac{1}{q^{25/2}}+\frac{3}{q^{23/2}}-\frac{6}{q^{21/2}}+\frac{10}{q^{19/2}}-\frac{12}{q^{17/2}}+\frac{13}{q^{15/2}}-\frac{13}{q^{13/2}}+\frac{9}{q^{11/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial a^{11} z^3+a^{11} z-a^{11} z^{-1} -a^9 z^5+5 a^9 z+3 a^9 z^{-1} -3 a^7 z^5-10 a^7 z^3-9 a^7 z-2 a^7 z^{-1} -a^5 z^5-2 a^5 z^3 (db)
Kauffman polynomial a^{15} z^5-2 a^{15} z^3+a^{15} z+3 a^{14} z^6-6 a^{14} z^4+3 a^{14} z^2+4 a^{13} z^7-5 a^{13} z^5-a^{13} z^3+a^{13} z+4 a^{12} z^8-5 a^{12} z^6+3 a^{12} z^4-3 a^{12} z^2-a^{12}+2 a^{11} z^9+2 a^{11} z^7-5 a^{11} z^5+a^{11} z^3+a^{11} z^{-1} +9 a^{10} z^8-20 a^{10} z^6+18 a^{10} z^4-2 a^{10} z^2-3 a^{10}+2 a^9 z^9+4 a^9 z^7-16 a^9 z^5+19 a^9 z^3-9 a^9 z+3 a^9 z^{-1} +5 a^8 z^8-9 a^8 z^6+4 a^8 z^4+4 a^8 z^2-3 a^8+6 a^7 z^7-16 a^7 z^5+17 a^7 z^3-9 a^7 z+2 a^7 z^{-1} +3 a^6 z^6-5 a^6 z^4+a^5 z^5-2 a^5 z^3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-10-9-8-7-6-5-4-3-2-10χ
-4          11
-6         31-2
-8        4  4
-10       53  -2
-12      84   4
-14     55    0
-16    78     -1
-18   46      2
-20  26       -4
-22 14        3
-24 2         -2
-261          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-10 {\mathbb Z}
r=-9 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-8 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-7 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-6 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=-5 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a76.gif

L10a76

L10a78.gif

L10a78