L10a87

From Knot Atlas
Jump to: navigation, search

L10a86.gif

L10a86

L10a88.gif

L10a88

Contents

L10a87.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a87 at Knotilus!

Other depiction
Mongolian ornament

Link Presentations

[edit Notes on L10a87's Link Presentations]

Planar diagram presentation X8192 X20,9,7,10 X6718 X2,11,3,12 X12,3,13,4 X16,5,17,6 X18,13,19,14 X14,17,15,18 X4,15,5,16 X10,19,11,20
Gauss code {1, -4, 5, -9, 6, -3}, {3, -1, 2, -10, 4, -5, 7, -8, 9, -6, 8, -7, 10, -2}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a87 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{4 u^2 v^2-4 u^2 v+u^2-4 u v^2+9 u v-4 u+v^2-4 v+4}{u v} (db)
Jones polynomial -\frac{6}{q^{9/2}}+\frac{2}{q^{7/2}}-\frac{1}{q^{5/2}}-\frac{1}{q^{25/2}}+\frac{3}{q^{23/2}}-\frac{6}{q^{21/2}}+\frac{9}{q^{19/2}}-\frac{11}{q^{17/2}}+\frac{12}{q^{15/2}}-\frac{11}{q^{13/2}}+\frac{8}{q^{11/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial z^3 a^{11}+z a^{11}-z^5 a^9-z^3 a^9+z a^9-2 z^5 a^7-5 z^3 a^7-2 z a^7+a^7 z^{-1} -z^5 a^5-3 z^3 a^5-3 z a^5-a^5 z^{-1} (db)
Kauffman polynomial -z^5 a^{15}+2 z^3 a^{15}-z a^{15}-3 z^6 a^{14}+6 z^4 a^{14}-3 z^2 a^{14}-4 z^7 a^{13}+6 z^5 a^{13}-z^3 a^{13}-z a^{13}-3 z^8 a^{12}+z^6 a^{12}+3 z^4 a^{12}-z^9 a^{11}-5 z^7 a^{11}+6 z^5 a^{11}+3 z^3 a^{11}-3 z a^{11}-5 z^8 a^{10}+3 z^6 a^{10}+4 z^4 a^{10}-3 z^2 a^{10}-z^9 a^9-4 z^7 a^9+4 z^5 a^9+2 z^3 a^9-z a^9-2 z^8 a^8-3 z^6 a^8+10 z^4 a^8-6 z^2 a^8-3 z^7 a^7+4 z^5 a^7-z^3 a^7-z a^7+a^7 z^{-1} -2 z^6 a^6+3 z^4 a^6-a^6-z^5 a^5+3 z^3 a^5-3 z a^5+a^5 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-10-9-8-7-6-5-4-3-2-10χ
-4          11
-6         21-1
-8        4  4
-10       42  -2
-12      74   3
-14     54    -1
-16    67     -1
-18   46      2
-20  25       -3
-22 14        3
-24 2         -2
-261          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-10 {\mathbb Z}
r=-9 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-8 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-7 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-6 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=-5 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a86.gif

L10a86

L10a88.gif

L10a88