L10a88

From Knot Atlas
Jump to: navigation, search

L10a87.gif

L10a87

L10a89.gif

L10a89

Contents

L10a88.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a88 at Knotilus!


Link Presentations

[edit Notes on L10a88's Link Presentations]

Planar diagram presentation X10,1,11,2 X12,3,13,4 X14,6,15,5 X16,7,17,8 X18,16,19,15 X20,13,9,14 X6,17,7,18 X4,20,5,19 X2,9,3,10 X8,11,1,12
Gauss code {1, -9, 2, -8, 3, -7, 4, -10}, {9, -1, 10, -2, 6, -3, 5, -4, 7, -5, 8, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a88 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u^3 v^2-2 u^3 v+u^3+u^2 v^3-5 u^2 v^2+7 u^2 v-2 u^2-2 u v^3+7 u v^2-5 u v+u+v^3-2 v^2+v}{u^{3/2} v^{3/2}} (db)
Jones polynomial q^{5/2}-4 q^{3/2}+7 \sqrt{q}-\frac{10}{\sqrt{q}}+\frac{12}{q^{3/2}}-\frac{13}{q^{5/2}}+\frac{11}{q^{7/2}}-\frac{9}{q^{9/2}}+\frac{5}{q^{11/2}}-\frac{3}{q^{13/2}}+\frac{1}{q^{15/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial -z a^7+2 z^3 a^5+2 z a^5+a^5 z^{-1} -z^5 a^3-z^3 a^3-2 z a^3-a^3 z^{-1} -z^5 a-z^3 a-z a+z^3 a^{-1} (db)
Kauffman polynomial -a^5 z^9-a^3 z^9-3 a^6 z^8-7 a^4 z^8-4 a^2 z^8-3 a^7 z^7-7 a^5 z^7-11 a^3 z^7-7 a z^7-a^8 z^6+6 a^6 z^6+11 a^4 z^6-3 a^2 z^6-7 z^6+10 a^7 z^5+26 a^5 z^5+27 a^3 z^5+7 a z^5-4 z^5 a^{-1} +3 a^8 z^4+a^4 z^4+13 a^2 z^4-z^4 a^{-2} +8 z^4-10 a^7 z^3-26 a^5 z^3-20 a^3 z^3-a z^3+3 z^3 a^{-1} -2 a^8 z^2-3 a^6 z^2-5 a^4 z^2-6 a^2 z^2-2 z^2+3 a^7 z+10 a^5 z+7 a^3 z+a^4-a^5 z^{-1} -a^3 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-10123χ
6          1-1
4         3 3
2        41 -3
0       63  3
-2      75   -2
-4     65    1
-6    57     2
-8   46      -2
-10  26       4
-12 13        -2
-14 2         2
-161          -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a87.gif

L10a87

L10a89.gif

L10a89