L10a91

From Knot Atlas
Jump to: navigation, search

L10a90.gif

L10a90

L10a92.gif

L10a92

Contents

L10a91.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a91 at Knotilus!


Link Presentations

[edit Notes on L10a91's Link Presentations]

Planar diagram presentation X10,1,11,2 X12,4,13,3 X20,12,9,11 X2,9,3,10 X4,20,5,19 X14,6,15,5 X16,7,17,8 X18,16,19,15 X6,17,7,18 X8,14,1,13
Gauss code {1, -4, 2, -5, 6, -9, 7, -10}, {4, -1, 3, -2, 10, -6, 8, -7, 9, -8, 5, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation L10a91 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (v-1) \left(u^2 v-u^2+u v^2-4 u v+u-v^2+v\right)}{u^{3/2} v^{3/2}} (db)
Jones polynomial -q^{13/2}+4 q^{11/2}-7 q^{9/2}+10 q^{7/2}-13 q^{5/2}+13 q^{3/2}-13 \sqrt{q}+\frac{9}{\sqrt{q}}-\frac{6}{q^{3/2}}+\frac{3}{q^{5/2}}-\frac{1}{q^{7/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -z^3 a^{-5} +z^5 a^{-3} +z^3 a^{-3} +a^3 z+z a^{-3} +z^5 a^{-1} -2 a z^3-a z-z a^{-1} +a z^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial z^5 a^{-7} -z^3 a^{-7} +4 z^6 a^{-6} -7 z^4 a^{-6} +2 z^2 a^{-6} +6 z^7 a^{-5} -11 z^5 a^{-5} +5 z^3 a^{-5} -z a^{-5} +4 z^8 a^{-4} -11 z^4 a^{-4} +7 z^2 a^{-4} +z^9 a^{-3} +11 z^7 a^{-3} +a^3 z^5-26 z^5 a^{-3} -2 a^3 z^3+20 z^3 a^{-3} +a^3 z-6 z a^{-3} +7 z^8 a^{-2} +3 a^2 z^6-6 z^6 a^{-2} -6 a^2 z^4-6 z^4 a^{-2} +3 a^2 z^2+7 z^2 a^{-2} +z^9 a^{-1} +4 a z^7+9 z^7 a^{-1} -6 a z^5-21 z^5 a^{-1} +3 a z^3+19 z^3 a^{-1} -2 a z-8 z a^{-1} +a z^{-1} + a^{-1} z^{-1} +3 z^8+z^6-8 z^4+5 z^2-1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-10123456χ
14          11
12         3 -3
10        41 3
8       63  -3
6      74   3
4     66    0
2    77     0
0   48      4
-2  25       -3
-4 14        3
-6 2         -2
-81          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a90.gif

L10a90

L10a92.gif

L10a92