L10a94

From Knot Atlas
Jump to: navigation, search

L10a93.gif

L10a93

L10a95.gif

L10a95

Contents

L10a94.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a94 at Knotilus!


Link Presentations

[edit Notes on L10a94's Link Presentations]

Planar diagram presentation X10,1,11,2 X14,5,15,6 X12,3,13,4 X4,13,5,14 X16,19,17,20 X18,7,19,8 X6,17,7,18 X20,15,9,16 X2,9,3,10 X8,11,1,12
Gauss code {1, -9, 3, -4, 2, -7, 6, -10}, {9, -1, 10, -3, 4, -2, 8, -5, 7, -6, 5, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10a94 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1) t(2)+1) \left(2 t(2) t(1)^2-t(1)^2+2 t(2)^2 t(1)-4 t(2) t(1)+2 t(1)-t(2)^2+2 t(2)\right)}{t(1)^{3/2} t(2)^{3/2}} (db)
Jones polynomial -\frac{1}{q^{5/2}}+\frac{2}{q^{7/2}}-\frac{5}{q^{9/2}}+\frac{7}{q^{11/2}}-\frac{9}{q^{13/2}}+\frac{9}{q^{15/2}}-\frac{9}{q^{17/2}}+\frac{7}{q^{19/2}}-\frac{4}{q^{21/2}}+\frac{2}{q^{23/2}}-\frac{1}{q^{25/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial a^{11} z^3+2 a^{11} z-a^9 z^5-2 a^9 z^3+a^9 z^{-1} -2 a^7 z^5-6 a^7 z^3-4 a^7 z-a^7 z^{-1} -a^5 z^5-3 a^5 z^3-2 a^5 z (db)
Kauffman polynomial -z^5 a^{15}+3 z^3 a^{15}-2 z a^{15}-2 z^6 a^{14}+5 z^4 a^{14}-3 z^2 a^{14}-2 z^7 a^{13}+2 z^5 a^{13}+2 z^3 a^{13}-z a^{13}-2 z^8 a^{12}+3 z^6 a^{12}-4 z^4 a^{12}+3 z^2 a^{12}-z^9 a^{11}-3 z^5 a^{11}+6 z^3 a^{11}-3 z a^{11}-4 z^8 a^{10}+8 z^6 a^{10}-10 z^4 a^{10}+4 z^2 a^{10}-z^9 a^9-z^7 a^9+2 z^5 a^9-3 z^3 a^9+3 z a^9-a^9 z^{-1} -2 z^8 a^8+z^6 a^8+3 z^4 a^8-3 z^2 a^8+a^8-3 z^7 a^7+7 z^5 a^7-7 z^3 a^7+5 z a^7-a^7 z^{-1} -2 z^6 a^6+4 z^4 a^6-z^2 a^6-z^5 a^5+3 z^3 a^5-2 z a^5 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-10-9-8-7-6-5-4-3-2-10χ
-4          11
-6         21-1
-8        3  3
-10       42  -2
-12      53   2
-14     44    0
-16    55     0
-18   24      2
-20  25       -3
-22 13        2
-24 1         -1
-261          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-10 {\mathbb Z}
r=-9 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-8 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-7 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-6 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-5 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a93.gif

L10a93

L10a95.gif

L10a95