L10n102

From Knot Atlas
Jump to: navigation, search

L10n101.gif

L10n101

L10n103.gif

L10n103

Contents

L10n102.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n102 at Knotilus!


Link Presentations

[edit Notes on L10n102's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X14,7,15,8 X8,13,5,14 X11,18,12,19 X15,20,16,17 X19,16,20,9 X17,12,18,13 X2536 X4,9,1,10
Gauss code {1, -9, 2, -10}, {9, -1, 3, -4}, {-8, 5, -7, 6}, {10, -2, -5, 8, 4, -3, -6, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n102 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(x-1) \left(u v w x+u v w-u w+u x^2-v w+v x^2-x^2-x\right)}{\sqrt{u} \sqrt{v} \sqrt{w} x^{3/2}} (db)
Jones polynomial \frac{1}{q^{9/2}}-\frac{1}{q^{5/2}}-\frac{1}{q^{23/2}}+\frac{1}{q^{21/2}}-\frac{4}{q^{19/2}}+\frac{2}{q^{17/2}}-\frac{4}{q^{15/2}}+\frac{1}{q^{13/2}}-\frac{3}{q^{11/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial a^{13} z^{-3} -4 a^{11} z^{-1} -3 a^{11} z^{-3} +5 z a^9+7 a^9 z^{-1} +3 a^9 z^{-3} -z^3 a^7-z a^7-2 a^7 z^{-1} -a^7 z^{-3} -z^5 a^5-5 z^3 a^5-4 z a^5-a^5 z^{-1} (db)
Kauffman polynomial -z^7 a^{13}+6 z^5 a^{13}-13 z^3 a^{13}+13 z a^{13}-6 a^{13} z^{-1} +a^{13} z^{-3} -z^8 a^{12}+3 z^6 a^{12}+4 z^4 a^{12}-16 z^2 a^{12}-3 a^{12} z^{-2} +13 a^{12}-5 z^7 a^{11}+26 z^5 a^{11}-41 z^3 a^{11}+31 z a^{11}-14 a^{11} z^{-1} +3 a^{11} z^{-3} -z^8 a^{10}+19 z^4 a^{10}-36 z^2 a^{10}-6 a^{10} z^{-2} +24 a^{10}-4 z^7 a^9+22 z^5 a^9-36 z^3 a^9+26 z a^9-12 a^9 z^{-1} +3 a^9 z^{-3} -3 z^6 a^8+16 z^4 a^8-21 z^2 a^8-3 a^8 z^{-2} +11 a^8+z^5 a^7-3 z^3 a^7+4 z a^7-3 a^7 z^{-1} +a^7 z^{-3} +z^4 a^6-z^2 a^6-a^6-z^5 a^5+5 z^3 a^5-4 z a^5+a^5 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-10-9-8-7-6-5-4-3-2-10χ
-4          11
-6          11
-8       21  -1
-10      2    2
-12     361   2
-14    113    3
-16   13      2
-18  31       2
-20 14        3
-22           0
-241          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4 i=-2
r=-10 {\mathbb Z}
r=-9 {\mathbb Z}_2 {\mathbb Z}
r=-8 {\mathbb Z}^{4} {\mathbb Z}^{3}
r=-7 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-4 {\mathbb Z}^{3} {\mathbb Z}^{6}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-3 {\mathbb Z} {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}_2 {\mathbb Z}
r=-1
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n101.gif

L10n101

L10n103.gif

L10n103