L10n33

From Knot Atlas
Jump to: navigation, search

L10n32.gif

L10n32

L10n34.gif

L10n34

Contents

L10n33.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n33 at Knotilus!


Link Presentations

[edit Notes on L10n33's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X7,16,8,17 X20,18,5,17 X18,11,19,12 X10,19,11,20 X9,14,10,15 X15,8,16,9 X2536 X4,14,1,13
Gauss code {1, -9, 2, -10}, {9, -1, -3, 8, -7, -6, 5, -2, 10, 7, -8, 3, 4, -5, 6, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L10n33 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)-1) \left(t(2)^2-4 t(2)+1\right)}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial -\frac{4}{q^{9/2}}+\frac{6}{q^{7/2}}+q^{5/2}-\frac{9}{q^{5/2}}-4 q^{3/2}+\frac{8}{q^{3/2}}+\frac{2}{q^{11/2}}+6 \sqrt{q}-\frac{8}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial -2 a^5 z-a^5 z^{-1} +3 a^3 z^3+5 a^3 z+3 a^3 z^{-1} -a z^5-2 a z^3+z^3 a^{-1} -3 a z-2 a z^{-1} (db)
Kauffman polynomial 3 a^6 z^4-5 a^6 z^2+a^6+a^5 z^7+a^5 z^5-4 a^5 z^3+4 a^5 z-a^5 z^{-1} +a^4 z^8+a^4 z^6+a^4 z^4-6 a^4 z^2+3 a^4+5 a^3 z^7-4 a^3 z^5-6 a^3 z^3+9 a^3 z-3 a^3 z^{-1} +a^2 z^8+7 a^2 z^6-11 a^2 z^4+z^4 a^{-2} +3 a^2+4 a z^7-a z^5+4 z^5 a^{-1} -6 a z^3-4 z^3 a^{-1} +5 a z-2 a z^{-1} +6 z^6-8 z^4+z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123χ
6        1-1
4       3 3
2      31 -2
0     53  2
-2    55   0
-4   43    1
-6  25     3
-8 24      -2
-10 2       2
-122        -2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-5 {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n32.gif

L10n32

L10n34.gif

L10n34