L10n38

From Knot Atlas
Jump to: navigation, search

L10n37.gif

L10n37

L10n39.gif

L10n39

Contents

L10n38.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n38 at Knotilus!


Link Presentations

[edit Notes on L10n38's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X16,13,17,14 X14,9,15,10 X10,15,11,16 X17,5,18,20 X7,19,8,18 X19,9,20,8 X2536 X4,11,1,12
Gauss code {1, -9, 2, -10}, {9, -1, -7, 8, 4, -5, 10, -2, 3, -4, 5, -3, -6, 7, -8, 6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n38 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)+t(2)) \left(t(2)^2-t(2)+1\right)^2}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial -\frac{6}{q^{9/2}}+\frac{5}{q^{7/2}}-\frac{7}{q^{5/2}}+\frac{5}{q^{3/2}}+\frac{1}{q^{15/2}}-\frac{2}{q^{13/2}}+\frac{4}{q^{11/2}}+2 \sqrt{q}-\frac{4}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial -z a^7-2 a^7 z^{-1} +3 z^3 a^5+9 z a^5+7 a^5 z^{-1} -2 z^5 a^3-9 z^3 a^3-14 z a^3-7 a^3 z^{-1} +2 z^3 a+4 z a+2 a z^{-1} (db)
Kauffman polynomial -z^6 a^8+4 z^4 a^8-5 z^2 a^8+2 a^8-2 z^7 a^7+7 z^5 a^7-7 z^3 a^7+4 z a^7-2 a^7 z^{-1} -z^8 a^6-2 z^6 a^6+17 z^4 a^6-20 z^2 a^6+8 a^6-6 z^7 a^5+20 z^5 a^5-22 z^3 a^5+17 z a^5-7 a^5 z^{-1} -z^8 a^4-5 z^6 a^4+24 z^4 a^4-29 z^2 a^4+13 a^4-4 z^7 a^3+12 z^5 a^3-18 z^3 a^3+16 z a^3-7 a^3 z^{-1} -4 z^6 a^2+11 z^4 a^2-17 z^2 a^2+8 a^2-z^5 a-3 z^3 a+3 z a-2 a z^{-1} -3 z^2+2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-101χ
2        2-2
0       2 2
-2      43 -1
-4     31  2
-6    24   2
-8   43    1
-10  13     2
-12 13      -2
-14 1       1
-161        -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}_2^{2} {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n37.gif

L10n37

L10n39.gif

L10n39