L10n5

From Knot Atlas
Jump to: navigation, search

L10n4.gif

L10n4

L10n6.gif

L10n6

Contents

L10n5.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n5 at Knotilus!


Link Presentations

[edit Notes on L10n5's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X17,1,18,4 X9,14,10,15 X3849 X5,11,6,10 X13,5,14,20 X11,19,12,18 X19,13,20,12 X2,16,3,15
Gauss code {1, -10, -5, 3}, {-6, -1, 2, 5, -4, 6, -8, 9, -7, 4, 10, -2, -3, 8, -9, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L10n5 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)-1) \left(t(2)^2+1\right)}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial 2 q^{9/2}-2 q^{7/2}+2 q^{5/2}-\frac{1}{q^{5/2}}-3 q^{3/2}+\frac{1}{q^{3/2}}-q^{11/2}+2 \sqrt{q}-\frac{2}{\sqrt{q}} (db)
Signature 3 (db)
HOMFLY-PT polynomial -z^5 a^{-1} +a z^3-5 z^3 a^{-1} +2 z^3 a^{-3} +3 a z-8 z a^{-1} +6 z a^{-3} -z a^{-5} +2 a z^{-1} -4 a^{-1} z^{-1} +3 a^{-3} z^{-1} - a^{-5} z^{-1} (db)
Kauffman polynomial -z^8 a^{-2} -z^8-a z^7-3 z^7 a^{-1} -2 z^7 a^{-3} +3 z^6 a^{-2} -2 z^6 a^{-4} +5 z^6+6 a z^5+16 z^5 a^{-1} +9 z^5 a^{-3} -z^5 a^{-5} +2 z^4 a^{-2} +8 z^4 a^{-4} -6 z^4-11 a z^3-26 z^3 a^{-1} -13 z^3 a^{-3} +2 z^3 a^{-5} -7 z^2 a^{-2} -9 z^2 a^{-4} -2 z^2 a^{-6} +7 a z+17 z a^{-1} +11 z a^{-3} -z a^{-7} +3 a^{-2} +3 a^{-4} + a^{-6} +2-2 a z^{-1} -4 a^{-1} z^{-1} -3 a^{-3} z^{-1} - a^{-5} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234χ
12        11
10       1 -1
8      22 0
6     11  0
4    221  1
2   23    1
0   11    0
-2 12      1
-4         0
-61        1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2 i=4
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{2}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z} {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n4.gif

L10n4

L10n6.gif

L10n6