L10n65

From Knot Atlas
Jump to: navigation, search

L10n64.gif

L10n64

L10n66.gif

L10n66

Contents

L10n65.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n65 at Knotilus!


Link Presentations

[edit Notes on L10n65's Link Presentations]

Planar diagram presentation X6172 X3,11,4,10 X11,16,12,17 X13,19,14,18 X17,20,18,9 X19,13,20,12 X15,8,16,5 X7,14,8,15 X2536 X9,1,10,4
Gauss code {1, -9, -2, 10}, {9, -1, -8, 7}, {-10, 2, -3, 6, -4, 8, -7, 3, -5, 4, -6, 5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation L10n65 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v w^3-3 u v w^2+3 u v w-u v-2 u w+u-v w^3+2 v w^2+w^3-3 w^2+3 w-1}{\sqrt{u} \sqrt{v} w^{3/2}} (db)
Jones polynomial 3 q^{-5} -5 q^{-4} +q^3+7 q^{-3} -2 q^2-7 q^{-2} +5 q+8 q^{-1} -6 (db)
Signature -2 (db)
HOMFLY-PT polynomial a^6 z^{-2} +a^6-z^4 a^4-3 z^2 a^4-3 a^4 z^{-2} -5 a^4+z^6 a^2+4 z^4 a^2+7 z^2 a^2+4 a^2 z^{-2} +8 a^2-2 z^4-6 z^2-3 z^{-2} -6+z^2 a^{-2} + a^{-2} z^{-2} +2 a^{-2} (db)
Kauffman polynomial a^2 z^8+z^8+5 a^3 z^7+7 a z^7+2 z^7 a^{-1} +7 a^4 z^6+10 a^2 z^6+z^6 a^{-2} +4 z^6+3 a^5 z^5-9 a^3 z^5-18 a z^5-6 z^5 a^{-1} -18 a^4 z^4-37 a^2 z^4-4 z^4 a^{-2} -23 z^4+4 a^3 z^3+8 a z^3+4 z^3 a^{-1} +6 a^6 z^2+24 a^4 z^2+40 a^2 z^2+6 z^2 a^{-2} +28 z^2+a^5 z+a^3 z+a z+z a^{-1} -4 a^6-14 a^4-21 a^2-4 a^{-2} -14-a^5 z^{-1} -a^3 z^{-1} -a z^{-1} - a^{-1} z^{-1} +a^6 z^{-2} +3 a^4 z^{-2} +4 a^2 z^{-2} + a^{-2} z^{-2} +3 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234χ
7        11
5       1 -1
3      41 3
1     21  -1
-1    64   2
-3   45    1
-5  33     0
-7 24      2
-913       -2
-113        3
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-4 {\mathbb Z}^{3} {\mathbb Z}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n64.gif

L10n64

L10n66.gif

L10n66