L10n8

From Knot Atlas
Jump to: navigation, search

L10n7.gif

L10n7

L10n9.gif

L10n9

Contents

L10n8.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n8 at Knotilus!


Link Presentations

[edit Notes on L10n8's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X17,1,18,4 X9,14,10,15 X3849 X5,11,6,10 X11,5,12,20 X13,19,14,18 X19,13,20,12 X2,16,3,15
Gauss code {1, -10, -5, 3}, {-6, -1, 2, 5, -4, 6, -7, 9, -8, 4, 10, -2, -3, 8, -9, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n8 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 (u-1) (v-1)}{\sqrt{u} \sqrt{v}} (db)
Jones polynomial -q^{9/2}+q^{7/2}-\frac{1}{q^{7/2}}-2 q^{5/2}+\frac{1}{q^{5/2}}+3 q^{3/2}-\frac{2}{q^{3/2}}-3 \sqrt{q}+\frac{2}{\sqrt{q}} (db)
Signature 1 (db)
HOMFLY-PT polynomial z a^3+a^3 z^{-1} -z^3 a-2 z a-a z^{-1} -z^3 a^{-1} -z a^{-1} - a^{-1} z^{-1} +2 z a^{-3} +2 a^{-3} z^{-1} - a^{-5} z^{-1} (db)
Kauffman polynomial z^3 a^{-5} -3 z a^{-5} + a^{-5} z^{-1} +z^4 a^{-4} -2 z^2 a^{-4} + a^{-4} +z^7 a^{-3} +a^3 z^5-6 z^5 a^{-3} -4 a^3 z^3+14 z^3 a^{-3} +3 a^3 z-11 z a^{-3} -a^3 z^{-1} +2 a^{-3} z^{-1} +z^8 a^{-2} +a^2 z^6-6 z^6 a^{-2} -3 a^2 z^4+13 z^4 a^{-2} -9 z^2 a^{-2} +a^2+3 a^{-2} +a z^7+2 z^7 a^{-1} -3 a z^5-10 z^5 a^{-1} +17 z^3 a^{-1} +3 a z-8 z a^{-1} -a z^{-1} + a^{-1} z^{-1} +z^8-5 z^6+9 z^4-7 z^2+2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234χ
10        11
8         0
6      21 1
4     1   -1
2    22   0
0   23    1
-2   11    0
-4 12      1
-6         0
-81        1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0 i=2
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{2}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z} {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n7.gif

L10n7

L10n9.gif

L10n9