From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a106 at Knotilus!

Link Presentations

[edit Notes on L11a106's Link Presentations]

Planar diagram presentation X6172 X14,3,15,4 X16,8,17,7 X22,18,5,17 X18,9,19,10 X8,21,9,22 X20,11,21,12 X10,19,11,20 X12,16,13,15 X2536 X4,13,1,14
Gauss code {1, -10, 2, -11}, {10, -1, 3, -6, 5, -8, 7, -9, 11, -2, 9, -3, 4, -5, 8, -7, 6, -4}
A Braid Representative
A Morse Link Presentation L11a106 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u v^5-4 u v^4+8 u v^3-8 u v^2+6 u v-2 u-2 v^5+6 v^4-8 v^3+8 v^2-4 v+1}{\sqrt{u} v^{5/2}} (db)
Jones polynomial q^{3/2}-4 \sqrt{q}+\frac{7}{\sqrt{q}}-\frac{12}{q^{3/2}}+\frac{16}{q^{5/2}}-\frac{19}{q^{7/2}}+\frac{18}{q^{9/2}}-\frac{16}{q^{11/2}}+\frac{12}{q^{13/2}}-\frac{7}{q^{15/2}}+\frac{3}{q^{17/2}}-\frac{1}{q^{19/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial a^9 z+a^9 z^{-1} -3 a^7 z^3-6 a^7 z-3 a^7 z^{-1} +3 a^5 z^5+9 a^5 z^3+9 a^5 z+4 a^5 z^{-1} -a^3 z^7-4 a^3 z^5-7 a^3 z^3-6 a^3 z-2 a^3 z^{-1} +a z^5+2 a z^3 (db)
Kauffman polynomial -z^5 a^{11}+2 z^3 a^{11}-z a^{11}-3 z^6 a^{10}+5 z^4 a^{10}-3 z^2 a^{10}+a^{10}-5 z^7 a^9+7 z^5 a^9-4 z^3 a^9+2 z a^9-a^9 z^{-1} -5 z^8 a^8+2 z^6 a^8+7 z^4 a^8-8 z^2 a^8+3 a^8-3 z^9 a^7-7 z^7 a^7+22 z^5 a^7-22 z^3 a^7+12 z a^7-3 a^7 z^{-1} -z^{10} a^6-10 z^8 a^6+18 z^6 a^6-6 z^4 a^6-5 z^2 a^6+3 a^6-7 z^9 a^5+4 z^7 a^5+17 z^5 a^5-26 z^3 a^5+17 z a^5-4 a^5 z^{-1} -z^{10} a^4-11 z^8 a^4+30 z^6 a^4-22 z^4 a^4+2 z^2 a^4+2 a^4-4 z^9 a^3+2 z^7 a^3+14 z^5 a^3-17 z^3 a^3+8 z a^3-2 a^3 z^{-1} -6 z^8 a^2+16 z^6 a^2-12 z^4 a^2+2 z^2 a^2-4 z^7 a+11 z^5 a-7 z^3 a-z^6+2 z^4 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
4           1-1
2          3 3
0         41 -3
-2        83  5
-4       95   -4
-6      107    3
-8     89     1
-10    810      -2
-12   59       4
-14  27        -5
-16 15         4
-18 2          -2
-201           1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-8 {\mathbb Z}
r=-7 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-4 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{8}
r=-3 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=-1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{8}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.