L11a110

From Knot Atlas
Jump to: navigation, search

L11a109.gif

L11a109

L11a111.gif

L11a111

Contents

L11a110.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a110 at Knotilus!


Link Presentations

[edit Notes on L11a110's Link Presentations]

Planar diagram presentation X6172 X14,4,15,3 X16,8,17,7 X18,10,19,9 X20,12,21,11 X22,14,5,13 X8,18,9,17 X10,20,11,19 X12,22,13,21 X2536 X4,16,1,15
Gauss code {1, -10, 2, -11}, {10, -1, 3, -7, 4, -8, 5, -9, 6, -2, 11, -3, 7, -4, 8, -5, 9, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L11a110 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (v-1) \left(v^2+1\right) \left(v^4+1\right)}{\sqrt{u} v^{7/2}} (db)
Jones polynomial q^{25/2}-2 q^{23/2}+3 q^{21/2}-3 q^{19/2}+4 q^{17/2}-4 q^{15/2}+4 q^{13/2}-4 q^{11/2}+2 q^{9/2}-3 q^{7/2}+q^{5/2}-q^{3/2} (db)
Signature 7 (db)
HOMFLY-PT polynomial -z^9 a^{-7} +z^7 a^{-5} -8 z^7 a^{-7} +z^7 a^{-9} +7 z^5 a^{-5} -23 z^5 a^{-7} +6 z^5 a^{-9} +16 z^3 a^{-5} -31 z^3 a^{-7} +11 z^3 a^{-9} +14 z a^{-5} -22 z a^{-7} +8 z a^{-9} +4 a^{-5} z^{-1} -7 a^{-7} z^{-1} +3 a^{-9} z^{-1} (db)
Kauffman polynomial z^2 a^{-16} +2 z^3 a^{-15} +3 z^4 a^{-14} -3 z^2 a^{-14} + a^{-14} +3 z^5 a^{-13} -4 z^3 a^{-13} +3 z^6 a^{-12} -6 z^4 a^{-12} +3 z^7 a^{-11} -9 z^5 a^{-11} +4 z^3 a^{-11} +3 z^8 a^{-10} -12 z^6 a^{-10} +10 z^4 a^{-10} +3 z^9 a^{-9} -17 z^7 a^{-9} +31 z^5 a^{-9} -25 z^3 a^{-9} +12 z a^{-9} -3 a^{-9} z^{-1} +z^{10} a^{-8} -3 z^8 a^{-8} -7 z^6 a^{-8} +27 z^4 a^{-8} -23 z^2 a^{-8} +7 a^{-8} +4 z^9 a^{-7} -28 z^7 a^{-7} +66 z^5 a^{-7} -65 z^3 a^{-7} +30 z a^{-7} -7 a^{-7} z^{-1} +z^{10} a^{-6} -6 z^8 a^{-6} +8 z^6 a^{-6} +8 z^4 a^{-6} -19 z^2 a^{-6} +7 a^{-6} +z^9 a^{-5} -8 z^7 a^{-5} +23 z^5 a^{-5} -30 z^3 a^{-5} +18 z a^{-5} -4 a^{-5} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-10123456789χ
26           1-1
24          1 1
22         21 -1
20        11  0
18       32   -1
16      11    0
14     33     0
12    11      0
10   13       2
8  21        1
6 13         2
4            0
21           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=6 i=8
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{3} {\mathbb Z}^{2}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=7 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=9 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a109.gif

L11a109

L11a111.gif

L11a111